A critical look at reactions in class I and II gas-expanded liquids using \mbox{CO}_2 and other gases

Geoffrey R. Akien* and Martyn Poliakoff*

Received 2nd March 2009, Accepted 29th April 2009 First published as an Advance Article on the web 2nd June 2009 DOI: 10.1039/b904097h

This short review aims to give a summary of the publications on reactions in class I and II gas-expanded liquids (GXLs) (those with organic or aqueous liquid components), and to draw conclusions from the trends in the current literature.

Introduction

For many years, there has been interest in performing reactions in supercritical fluids (SCFs),1-24 one of the main advantages being their complete miscibility with gases such as H_2 or O_2 . The non-toxicity of CO₂ and its low cost are also appealing when choosing environmentally acceptable replacements for traditional solvents. However, the relatively high pressures³ $(P_c(CO_2) = 73.8 \text{ bar})$ and low solvent power have discouraged their application. This lack of solvent power is a key issue preventing the use of SCFs in the pharmaceutical industry, where the molecules of interest are often strongly basic and usually not very soluble in conventional organic solvents, let alone in SCFs. Despite this, the relatively low production volumes typical of pharma are well-suited to using SCFs, and SCFs have been successfully applied to the micronisation of drugs²⁵⁻²⁹ and supercritical fluid chromatography, both for analytical and preparative purposes.³⁰⁻³²

Our research group at the University of Nottingham has been working hard to overcome these solubility problems by the use of appropriate co-solvents. This approach is promising, as for example in the continuous selective hydrogenation of sertraline imine using THF as a co-solvent, where it was possible to

School of Chemistry, University of Nottingham, University Park, Nottingham, UK NG7 2RD. E-mail: geoff.akien@gmail.com, martyn.poliakoff@nottingham.ac.uk; Fax: +44 (0)115 951 3058; Tel: +44 (0)115 951 3520

Geoffrey R. Akien

Geoff Akien, born in 1983 in Sunderland (UK), studied Chemistry at the University of Nottingham and received his MSc in 2006. He is currently a final year PhD student at Nottingham, UK under the supervision of co-author Professor Martyn Poliakoff FRS and Dr Andy Wells at AstraZeneca Charnwood, on "The Application of Gas-Expanded Liquids to the Production of Pharmaceutical Intermediates". improve on the diastereoselectivity compared with the published Pfizer process.³³

We are now developing this co-solvent approach further and this has inevitably drawn us into the field of gas-expanded liquids (GXLs). These liquids and their applications were extensively reviewed by Jessop *et al.* two years ago,³⁴ and more recently by Arai *et al.* in a more limited sense.³⁵ However, our project required a more detailed survey of the recent literature on reactions in GXLs, leading to some quite interesting conclusions. We felt that our findings might be of some use to others, so the purpose of this short review is to publish these conclusions and to provide an easily accessible tabulation of the papers for those who wish to follow particular points in greater depth.

This review focuses on reactions in class I and class II GXLs (defined later) since the non-volatility of class III liquids such as CO_2 +ionic liquids (ILs) or polymers requires a very different approach to reactions. In addition, both CO_2 +ILs³⁶⁻⁴⁰ and CO_2 +polymers⁴¹ have been reviewed in their own right.

For those reading the HTML version, this review also demonstrates the power of the RSC Project Prospect to enhance the information available to the reader.

What are GXLs?

Interest in GXLs has increased rapidly in the last 10 years, but the precise definition of a GXL is still not clear-cut. As a working definition,⁴² a GXL is a liquid the volume of which is increased when pressurised with a condensable gas such as CO₂. Due to the variety of different behaviours of liquids with expanding gases, a classification system has been proposed by Jessop *et al.*³⁴ A class I GXL is one where the expanding gas has a low solubility in the liquid, and which does not expand much (such as CO₂+water). A class II GXL is one where the solubility of the expanding gas is high and the expansion is large, *e.g.* CO₂+THF. Class III GXLs are liquids where the gas is moderately soluble but the expansion is small *e.g.* CO₂+ILs or liquid polymers.

Several definitions have been put forward since the concept of a GXL was first suggested, with the definitions changing slightly over time. One of the more recent was proposed by Jessop *et al.* where a GXL was defined³⁴ as "a mixed solvent composed of a compressible gas...dissolved in an organic solvent". This definition is probably too broad because it encapsulates an extremely large number of reactions carried out in SCFs, where only small volumes (<5 vol%) of co-solvent are used. A slightly more refined definition has been put forward by Eckert et al. who suggest that a CO₂-expanded liquid (CXL) be any mixture of CO₂ and an organic solvent at conditions below the mixture critical point.43 Both of these definitions inadverdently exclude systems where the reactants are liquid at the reaction conditions without the need for additional co-solvents, so the definition should be extended to incorporate these. As will be seen in this review, there are just as many CXLs which do not use any solvent compared to those which do. The Eckert et al. definition also includes low pressure and high temperature mixtures which can best be described as a vapour, which probably should not be included in the GXL definition. In contrast to Jessop et al.,³⁴ we believe that an enhanced fluidity liquid (EFL) (one where the gas is completely dissolved in the liquid⁴⁴) resembles a liquid more closely than an SCF since, under high pressures, the compressibility of an EFL is much less than that of an SCF. Because of these issues, we think that the definition of a GXL should be either broadened or narrowed, instead of currently occupying an ambiguously-defined middle ground.

We favour the broader definition of a GXL, which is applied in this review. In defining a GXL it is more useful to use pressure-composition diagrams at constant temperature than the more usual pressure-temperature diagrams at a constant composition, since the composition of a mixture can change when it is pressurised with CO_2 . For convenience sake we also use the critical composition to describe the composition corresponding to the critical pressure and temperature.

A GXL would therefore be a mixture of a condensible gas with other components such that there are at least 2 fluid phases or, a single phase above the bubble point curve but below the critical composition, where the properties of the liquid phase(s) are substantially different from those at atmospheric pressure. This then excludes all mixtures which are adjacent to the dew point curve, but includes mixtures where the components are solid at atmospheric pressure. A clearer diagram of this is shown in Fig. 1. The separation between an EFL and an SCF at the top of the diagram is certainly an artificial one, but is perhaps the most practical way of properly defining a GXL.

Fig. 1 Definitions of different phase regions, using an isotherm for the CO_2 +methanol binary system at 121.1 °C as an example.⁴⁵ The hashed region represents the area which the GXL definition is intended to exclude. Note that the position of the critical point on the phase envelope will vary from one binary system to another.

In other words, a GXL encompasses systems with >1 fluid phase, subcritical fluids (both the pressure and composition are below their critical values) and EFLs.⁴⁶ On the other hand, a narrower and simpler definition would only require that a liquid be *saturated* with a gas which expands it, *i.e.* excluding EFLs and subcritical fluids outside of the biphasic region. Note that this would not necessarily require the presence of a separate vapour phase.

What happens on expansion?

The typical expansion behaviour of a class II GXL is shown in Fig. 2, using CO_2 +THF as the example.⁴⁷

Fig. 2 Volume expansion of THF with varying CO₂ pressure at different temperatures, as measured visually in a Jerguson view cell.⁴⁷ The expansion increases rapidly towards the mixture critical point (shown with dashed lines).⁴⁸

The expansion increases with pressure, rising almost exponentially towards the critical point. When the expansion is plotted against the CO₂ mole fraction in the liquid phase, it is largely independent of the pressure or temperature.⁴² This expansion changes both the solvent character and the physical properties of the liquid. When CO₂ dissolves into the liquid, it reduces both the polarity and the hydrogen-bonding abilities of the expanded liquid.^{43,49–59} However, the solvent power is maintained for longer than expected, compared to simple dilution by CO₂, since the more polar solvent molecules can cluster dynamically around the solute. This leads to both an increase in the proportion of solvent molecules in the cybotactic region, but also an increase in the local density too.^{60–84} Although class I GXLs expand negligibly since CO₂ is not very soluble in them, when CO₂ is added, it can form carbonic acid *in situ*,^{26,85–93} lowering the pH to less than 3.

A rarely considered point is that the maximum expansion of a GXL depends on the initial amount of liquid in the vessel. Typically, <2 mol% of the solvent is dissolved in the CO₂-rich phase. If the cell is under-filled, increasing the pressure increases the density of the CO₂-rich vapour phase enough to start dissolving significant quantities of the solvent, so that the expansion decreases instead⁹⁴ until the dew point is reached. If the cell is over-filled, then increasing the pressure will increase the amount of CO₂ in the liquid phase until all of the vapour will have dissolved, *i.e.* at the bubble point. At lower pressures where CO₂ is a much poorer solvent, the expansion level is not significantly affected by the amount of liquid initially in the cell, but at higher expansions (>500%) this can be important. The normal working definition of the critical point is defined as the merging of the coexisting liquid and vapour phases when the properties of the two phases (density, composition *etc.*) are identical. This means that, for a pure substance, the meniscus must be at half the volume of the vessel.⁹⁵ In contrast for GXLs, the maximum possible liquid expansion can only be achieved if the critical point is observed with the meniscus at the top of the sealed vessel.

Like SCFs, GXLs have been shown to have improved mass transfer through reduced viscosity,^{64,69,71,87,96-109} increased solute diffusivity^{44,97,104,107-110} and decreased interfacial tension.¹¹¹⁻¹³¹ However, studies into actual mass transfer coefficients have been limited, with only four different systems being investigated, and most studies are on CO_2+H_2O under conditions relevant to deep-sea CO_2 sequestration.¹³²⁻¹⁴¹ The mass transfer rates for H_2 and CO into CO_2 -expanded 1-octene have been measured, but unfortunately they were not compared with data obtained under comparable conditions in the absence of CO_2 .¹⁴¹

The use of GXLs can in principle also lead to an overall reduction in solvent usage; the usually quoted reduction^{10,142} being "up to 80%". This figure comes from a comparison of *e.g.* 5 mL solvent *versus* 1 mL of solvent expanded five-fold.

More controversially, it has been suggested that gases such as H_2 , O_2 and CO have an increased solubility in CXLs. Several authors have shown that the H_2 mole fraction, ^{34,117,118,124,126-128,131,143} concentration¹³⁰ (mol dm⁻³) or ratio of H_2 : reactant¹¹¹ increases with increasing pressure, expansion^{116,122} or mole fraction CO₂ (we have ignored articles where there were no ternary VLE data to correlate the models used). There is much less data on O_2 and CO solubility, ^{34,115,116,121} and the solubility enhancements for these gases in CXLs are generally smaller than for H_2 .^{121,131} Unfortunately, rather few authors have made true comparisons of gas solubility with or without CO₂. Complicating matters further, there are two main ways of comparing solubilities, as shown in Fig. 3.

Fig. 3 A schematic of the four different ways of describing the gas solubility in a CXL compared to the solvent in the absence of CO_2 . Absolute values are for illustrative purposes only.

In case 1, the enhancement in the gas solubility can be compared in the absence and presence of CO_2 at the *same* gas fugacity—as in Fig. 3 with (a) *versus* (c) or (d). In case 2, one can also compare them at the same *total* pressure—(b) *versus*

(c) or (d). Most of the authors who have included solubilities of the pure gas for comparison have so far only used case 1 to compare their data, and it appears that in general, CO_2 enhances the solubility of the gas by this definition.^{34,124} Far fewer authors make direct comparisons using case 2,^{118,127,143} and only in select cases does the H₂ solubility exceed that achievable with H₂ alone at the same *total* pressure.

A few authors also compare their H₂ solubilities by the ratio of the solvent to the H₂,¹²² taking into account the effect of the volume expansion. It is also noteworthy that only small quantities of CO₂ are necessary to achieve a 20–30% solubility enhancement (as compared by case 2), one study requiring only a 10–20% partial pressure of CO₂ to do this.¹²⁷ Only one study has investigated the gas solubility enhancements with different expanding gases, the authors comparing the H₂ solubility in CO₂- and propane-expanded *iso*-propanol.¹²⁶ Under most of the conditions tested, the H₂ solubility was increased substantially by propane pressurisation as compared by case 2 (up to sevenfold enhancement as by case 1). The authors also studied CO₂expanded *iso*-propanol and found similar enhancements^{126,131} (~1.5–2.5) as compared by case 1.

It has been suggested that, as the solvent expands with increasing CO_2 pressure, although the H_2 mole fraction may only increase slightly, the expansion will reduce the volumetric concentration of the solute, and therefore the ratio of H_2 : solute will increase. Whether this has any effect will depend on the kinetics of the particular reaction involved. This also implies the dilution of the solute where it is not necessary. If a process runs well in 10 mL methanol, but runs slightly better in 10 mL methanol expanded five-fold, there is no overall reduction in solvent use—one of the purported benefits of using CXLs. The reduction can only be achieved if less methanol or more solute is used instead (as in Fig. 3(d)).

Selection criteria

In any review one has to be selective rather than encyclopedic. Since the terms "GXL" or "CXL" are often not used in the relevant articles, selecting papers becomes difficult. Papers have been included where they feature reactions with a CO₂ partial pressure of >15 bar and are also shown to be biphasic (excluding emulsions). If there is no information on the phase behaviour, articles are included if the CO₂ partial pressure is subcritical (<73.8 bar) or if there is >1 vol% H₂O, since H₂O rarely has a greater solubility than this under typical reaction conditions.¹⁴⁴ Papers are also included if the temperature is relatively low (\leq 40 °C) and the pressure is high (\geq 150 bar), *i.e.* an EFL.

The use of CO₂ as a C₁ building block^{145–148} has been widely investigated to make a variety of chemicals such as carboxylic acids,¹⁴⁹ carbonates,¹⁵⁰ carbamates¹⁵¹ and ureas.¹⁵² The literature on this subject is so extensive that a systematic review is beyond the scope of this article. However, if there was an accompanying systematic investigation of the phase behaviour of the system, or if the results were particularly interesting in their own right, then they have been included. Polymerisation and the modification of polymers have also been excluded for similar reasons.^{153–162}

All of the reactions in class I and II CXLs have been ordered alphabetically by reaction type in Table 1 and, by increasing complexity of the reactants within each reaction type. The range of temperatures and pressures studied for each example is included but are not always indicative of the number of phases, since phase behaviour data are rarely given for the whole range of reaction conditions studied. All reactions were performed in batch mode unless otherwise stated and, the reader is referred to the relevant article for more details.

The headings in Table 1 are intended to give the maximum amount of useful information without being unnecessarily lengthy. We have pointed out where comparisons have been made of the CXL with comparable supercritical operation, but only where there is a clear advantage for one type of phase behaviour over another. Frequently, one of the phase systems offers better selectivity for a reaction, with the other giving better conversion, or *vice versa*.

Table 2 is much shorter and contains the few examples of reactions in GXLs where expanding gases other than CO₂ have been used. Note that although N₂O has critical parameters³ similar to CO₂ ($P_C = 72.5$ bar and $T_C = 36.4$ °C), N₂O should never be used with organic compounds at high pressure because it is a potentially strong oxidising agent and severe explosions have been reported.^{163,164}

Conclusions

Unusually, we present our conclusions before our two Tables. These Tables show that there is a now a sufficiently large number of studies for general conclusions to be drawn. There are still many questions that remain unanswered but we believe that the following points from Tables 1 and 2 are a starting point for summarising the current state of the art.

1 There are many ways of using GXLs as reaction media. For instance, the catalyst need not be in the liquid phase, but in the dense fluid phase,^{165–167} or the whole reaction need not occur in the liquid phase either.^{168,169}

2 Apart from the Thomas Swan¹⁷⁰ and Idemitsu³ plants, all entries in the Tables feature laboratory-scale reactors. A wide range of reactor types and modes other than batch mode have been tested with CXLs, *e.g.* semi-batch where the catalyst is retained in the CO₂-rich phase and the liquid phase is removed without unnecessarily reducing the pressure.^{165–167} There is one example of a continuously-fed stirred batch reactor (CSTR) where the vapour phase is continuously removed and the inlet feed carefully controlled to maintain the correct liquid level inside the vessel,¹⁷¹ However, no one so far appears to have used a CSTR with continuous liquid phase removal. There have also been many examples of reactions in continuous flow fixed bed reactors.^{123,170,172-192}

3 Many of the reactions involve gaseous reagents such as H_2 , O_2 or CO probably because these are the most atom economical. This may also be because of the perceived large increase in gas solubility with CO₂ pressure, but this is not borne out by experiments which usually only show a small increase in solubility.^{121,131}

4 The number of papers is overwhelmingly skewed in favour of hydrogenation, with these making up nearly half of all the entries in Table 1.

5 Relatively few of the reactions are multi-step/component. The current trend in organic chemistry is to perform multi-step/ component reactions in one pot,¹⁹³⁻¹⁹⁶ and this trend is not reflected in the CXL literature. Since the use of high pressures

increases the energy costs, being able to run multiple reactions without depressurisation would go some way to mitigating these costs.

6 The molecular complexity of the reactants is relatively low, with most substrates having only one reactive functional group, and rarely more than two. This is perhaps surprising because one could use more complex substrates with lower solubility in GXLs. One of the strengths of GXLs is that their solvent power is much higher than in the corresponding SCF—this advantage has so far mainly been exploited to dissolve homogeneous catalysts, and not as often for reactants with a low solubility.

7 Over half of the reactions in Table 1 do not use any additional solvent at all. This is partly due to the solvent being a reactant, *e.g.* MeOH or ethylene glycol in acetal formation,¹⁹⁷ but more often it is the result of the reactants already being liquids.

8 CO₂ can reduce the lower temperature limit for performing reactions; reactions of naphthalene,¹⁹⁸ 2-vinylnaphthalene, methyl 2-acetamidoacrylate¹⁹⁹ and 2-butyne-1,4-diol²⁰⁰ involve solid reactants which are only liquid at the reaction temperature when pressurised with CO₂—CO₂ is crucial in reducing the melting point of the solid phase so that a reaction takes place without solvent. The concept can also work for reactions in which the product is a solid at the reaction temperature.²⁰¹

 9 CO_2 can also increase the upper temperature limit; butadiene is a gas at ambient pressure and temperature and the CO_2 pressure allows liquid operation with a dissolved homogeneous catalyst at higher temperatures.²⁰²

10 The range of catalysts used is very broad, and very few of the reactions use stoichiometric reagents—nicely adhering to the 9th principle of green chemistry.²⁰³ For ease of scale-up, heterogeneous catalysts are to be preferred, but homogeneous ones may be more selective.

11 The separation of the catalyst from GXL reaction mixtures has not been considered enough where homogeneous catalysts have been used. Two general approaches have been identified to separate the catalyst from the reaction mixture after the reaction is complete: (a) increase the pressure and hence expand the liquid to precipitate the catalyst, whether the reaction was carried out either in a GXL¹¹⁵ or at ambient pressure,²⁰⁴ or (b) release the pressure and expand the gas to separate the phases.²⁰⁵ This lack of proven catalyst separation strategies is a serious shortcoming which needs to be remedied since precious metalcatalysed processes will rarely be economically viable unless the catalyst can be properly recycled.²⁰⁶

12 Where conventional solvents are used, they are often polar, *e.g.* water, alcohols or acetonitrile (MeCN). This strategy is a sensible one, with CO_2 being used to tune the solvent power across the largest possible polarity range.

13 The pressure range is quite varied, but too few researchers cover a wide enough pressure range within their experiments, *e.g.* 30–300 bar.

14 A large number of the reactions in Table 1 do not include comparable experiments with a single phase—be it supercritical or otherwise. This is often because the poor solvent power of $scCO_2$ means that it is not practical to run the reaction in an SCF.

15 Where satisfactory comparisons have been made, there is no general consensus, even for a particular reaction type, on whether it is better to run the reactions in two phases or a single phase. This is perhaps because of the wide continuum of properties that is achievable as a liquid-like single phase through to a vapour-like single phase.

16 There are surprisingly few control experiments at ambient conditions or in the absence of CO₂—less than half of the papers included these types of experiments. It would be good to have more comparisons in the future. Those that do include comparisons with ambient conditions nearly always find that CXLs are superior. Those that report otherwise do not always give a plausible reason for the difference in performance.

17 One of the oft-cited advantages of SCFs is that the absence of phase boundaries increases the rate of mass transfer in the solvent.⁴ However, it is not always necessary to remove the phase boundaries since mass transfer (particularly at higher expansions) is not necessarily the rate-limiting process in a reaction.^{128,207,208} In some cases it may be that the rate of the reaction is the limiting factor.

18 In many cases, expansion with CO_2 decreases (rather than increases) the miscibility of two liquids. This occurs typically when one liquid is water and the other is a water-miscible organic (*e.g.* THF); expansion with CO_2 promotes the separation of the organic- and water-rich phases. Sometimes two (or more) liquid phases are present, in addition to the usual CO_2 -rich vapour phase. CO_2 can also increase the miscibility of certain liquids normally immiscible at ambient conditions, *e.g.* glycerol monostearate and MeOH.²⁰⁹ In one particular case involving alkenes and aqueous H_2O_2 , it was possible to render the two phases completely miscible.²¹⁰

19 Where the phase behaviour changes drastically over the course of the reaction, particularly in the condensation of small molecules, *e.g.* propylene oxide + CO_2^{211} or $H_2 + O_2^{168,169}$ it is difficult to draw firm conclusions about the role of GXLs in that reaction.

20 Those reactions in the Tables which have been scaledup,^{111,170,172,178,202,212} have always had more thorough investigations into the phase behaviour.

21 There is great potential in combining product separation with the chemical reaction while under pressure, *e.g.* liquid–liquid separation with levulinic acid hydrogenation,¹⁸⁸ or in the particle formation of Cu(indomethacin) using the anti-solvent properties of CO_2 .²¹³

 22 CO_2 cannot always be considered as an inert solvent—it can form carbonic acid which may deactivate enzyme catalysts,²¹⁴ carbamates which can either help or hinder reactions,^{151,215-219} or even CO *via* the reverse water gas shift reaction at higher temperatures.²²⁰⁻²²²

23 The use of CO_2 as an *in situ* acid catalyst has considerable potential when weakly acidic catalysis is required. When the reaction mixture is depressurised there is no residual salt waste that needs to be removed, as in conventional acid-catalysed reactions.^{57,197,223-226}

24 It is not always necessary to use large amounts of CO_2 to improve a reaction.^{123,127} In the hydrogenation of tetralin in a continuous flow fixed bed reactor, it was found that the optimum conditions were achieved with only 25 wt% CO_2 in the H₂ feed.¹²³ This has interesting implications for hydroprocessing worldwide, where unit operations are already run at high pressure and the addition of relatively small amounts of CO_2 to the feed might help improve performance. Similarly, the optimum performance in the selective hydrogenation of *p*-chloronitrobenzene required a CO_2 partial pressure of only 17% of the total pressure.¹²⁷

25 In the majority of papers, the expanding gas is CO_2 , despite the lower solvent power of CO_2 , and the higher pressures required to achieve a particular level of expansion. For example, 440% expansion of ethyl acetate at 25 °C with CO_2 needs 53.4 bar, but with ethane only 31.7 bar is required.⁴² This preference for CO_2 amongst the authors is probably the result of its low toxicity, non-flammability, cost and the fact that explosion-proof electrical systems are not necessarily required.

26 Different expanding gases have usually been chosen for chemical reasons, *e.g.* the use of CO_2 to form carbonic acid to accelerate the reaction,¹⁹⁷ the use of ethane to avoid the formation of CO which can poison the catalysts.^{227,228} However, another important reason is for solubility where the low polarity of CO_2 is not enough to dissolve large molecules like fatty acid methyl esters²²⁹ or more polar ones like carboxylic acids.²³⁰ Other expanding gases, such as propane or fluoroform, are much better solvents than CO_2 . This means that the pressures needed to reach single phase conditions with the pure fluid are accessible enough to negate the low pressure advantage normally associate with GXLs.

Fable 1	Reactions	in	class I	and	Π	CXLs

Reaction	Substrate(s)	Added solvent(s)	Catalyst(s)	T∕°C	<i>P</i> /bar	CXL> SCF? ^a	>ambient P? ^b	Comment(s)	Ref.
Acetal formation	Cyclohexanone + MeOH or ethylene glycol	_	In situ carbonic acid	25-50	1–60	_	Yes	Increasing the pressure too high reduces the liquid phase polarity, which hinders the carbonic acid dissociation equilibrium and therefore the reaction rate.	197
Acylation	Anisole + acetic anhydride		Various solid acids	50–90	50–155	_	No	Continuous-mode slurry reactor, catalyst could be reactivated completely by treating with boiling 40% HNO3(a).	231
Aldol Condensation	Propionaldehyde	—	None, MgO, or MgO with H_2O or dilute $HCl_{(ac)}$	80	1–170	—	—	Single phase operation favours the enal product and CXL operation the aldol.	232
Aldol Condensation + Hydrogenation	Crotonaldehyde + H ₂	—	1 wt% Pd/Amberlyst- 15	60	40–160	No	—	Continuous flow fixed bed, catalyst deactivated over time.	189,191
Alkylation	1-Butene + isobutene		SiO ₂ -supported Nafions or a zeolite	75–95	79–166	No		Continuous-mode slurry reactor; best performance was with periodic pressure increases to extract coke from the catalyst.	233

Reaction	Substrate(s)	Added solvent(s)	Catalyst(s)	T∕°C	P/bar	CXL> SCF? ^a	>ambient P? ^b	Comment(s)	Ref.
Alkylation	Phenol + cyclohexanol or cyclohexene		γ -Al ₂ O ₃	275–300	100–150	No	_	Continuous fixed bed, second phase formed from water by-product probably responsible	190
Alkylation	Anisole + ⁿ PrOH	—	Various solid acids	100–250	200–400	—	_	for catalyst deactivation Continuous flow fixed bed; pressure dependence depended	181
Alkylation	Triphenylmethanol + anisole	_	TFA or AcOH	23–118	1–346.7	Yes	No	on the catalyst support. Solventless operation at ambient pressure gave the highest conversion but reaction was very exothermic so unsuitable for scale-un.	234
Carboxylation	Pyrrole + CO_2 (+ NH ₄ OAc to deprotonate the product)	KH ₂ PO ₄ aqueous buffer	Bacillus megaterium PYR 2910 decathoxylase	40	65	—	_	Conducted both in batch and in continuous upflow.	192
Carboxylation	Range of ketones + CO_2	Neat (no added solvent), THF or MeOH	DBU	0–40	20–60	_	_	Competing decarboxylation is less in the absence of solvent; one-pot carboxylation- hydrogenation also attempted.	235
Complexation	Indomethacin + Cu(OAc) ₂	DMF	_	25	59	_		Precipitation of product drives equilibrium and simultane- ously micronises the product for pharmacoutical application	213
Condensation	2,3,6- Trimethylhydroquinone + isophytol	_	CO ₂ -soluble fluorinated Brønsted acids, or solid acids	100	1–350	No	Yes	Presence of a (polar) liquid phase leads to production of undesired side-products.	236
Coupling	Butadiene + CO ₂	_	$[(\eta^5-C_5H_5)Pd(\eta^3-C_3H_5)] + nitrile$ substituted phosphine ligands + BTD	60–85	46.3–143	Yes		Scaled up to 1 L reactor size; reaction could not be run as a single phase due to low catalyst solubility.	202
Coupling	Diazodiphenylmethane + H_2O or various alcohols or glycols	Acetone	In situ carbonic acid	23–40	15–100	_	_	Used to infer the presence of carbonic or alkylcarbonic acids formed <i>in situ</i> from $CO_2 + H_2O_3$	57,223
Coupling	Phenyl iodide + diphenylacetylene + phenylboronic acid + CsOAc	МеОН	PdCl ₂	100	0–100	_	Yes	Increasing pressure increased the yield up to a threshold pressure of 60 bar after which no further changes were observed.	237
Coupling (Heck)	Styrene or butyl acrylate + iodobenzene	H ₂ O or ethylene glycol	Pd(OAc) ₂ with TPPTS and NEt ₃	60	1–140	Yes	_	Higher conversions at ambient pressure but less leaching as a CXL than without CO_2 ; on depressurisation catalyst is in a separate liquid phase to the product.	238
Coupling (Heck)	Methyl acrylate + aryl bromides + NEt ₃	Toluene	$Pd(OAc)_2 + PPh_3$	130	1–130	_	—	Pressure effect was highly substrate-dependent.	239
Dehydration	1,4-Butanediol	H_2O	-	250-300	97–112	—	Yes	Includes mechanistic study using other solid acid catalysts to determine the role of CO ₂ .	240
Dehydration	Diols or triols	$\rm H_2O$	In situ carbonic	300	177-255	_	Yes	Presence of CO_2 substantially	241,242
Dehydrogenation	1-Phenylethanol		0.5 wt% Pd/Al ₂ O ₃	80–165	25–190	Yes	_	Continuous flow fixed bed reactor, no catalyst deactivation	182
Diazotisation + Coupling	N-heterocycle + substituted aminobenzene + sodium or isoamyl	H ₂ O	<i>In situ</i> carbonic acid	35–40	5–65	_	_	Early example of intentional <i>in situ</i> acid catalysis with pressurised CO ₂ .	243
Diazotisation + Coupling	N,N-diethylaniline + p-nitroaniline + NaNO ₂	H ₂ O	In situ carbonic acid	10-80	1–214	_	Yes	<i>In situ</i> acid catalysis meant that the use of the usual high concentrations of mineral acids could be avoided	244
Diazotisation + Coupling	Aniline + isoamyl nitrite or NaNO ₂ , then + N , N -dimethylaniline or KI (one-pot synthesis)	MeOH, THF or neat	In situ carbonic acid	5–50	10–47		_	Higher temperatures reduced the product yield; presumably due to decomposition of the intermediate diazobenzene.	225
Diels-Alder	Isoprene + methyl acrylate, methyl vinyl ketone or acrolein	Toluene or EtOH	SiO ₂ -Al ₂ O ₃	80	1–160	Yes	No	Authors suggest that the change in reactivity is due to changes in the interactions of the reactants with CO_2 as observed <i>via</i> FTIR.	239

Reaction	Substrate(s)	Added solvent(s)	Catalyst(s)	T∕°C	P/bar	CXL> SCF? ^a	>ambient P? ^b	Comment(s)	Ref.
Direct reaction	$H_2 + O_2$	Aqueous stabilisers	Homogeneous CO ₂ -soluble Pd(0) or (II)	22–25	172		_	Reaction takes place in the vapour phase with H_2O_2 condensing into the aqueous phase; dilution of vapour phase by CO_2 reduces explosion risks; see also cyclohexene epoxidation	168,169
Electro- carboxylation	Butadiene or 1,4-dibromobut-2-ene (Bu4NBr or Bu4NBF4 as supporting electrolytes)	DMF	_	25	1–40	_	Yes	Poor yields due to competing reactions; different cathode materials (Pb, Cu or stainless steel) gave significantly different	245
Electro- carboxylation	1,4-Dibromoperfluoro- butane, trifluoromethyl iodide or perfluorobutyl iodide (Bu4NBF4 as	MeOH	_	25–50	30–50	_	_	Increased CO ₂ pressure did not improve yields much since the rate of addition of CO_2 to the fluorinated anion intermediate was too slow.	246
Electro- carboxylation	supporting electrolyte) Benzyl chloride (BuN ₄ ClO ₄ or (decyl) ₄ NBPh ₄ as supporting electrolytes)	DMF or neat	_	40	1–120	Yes	Yes	Yields and selectivities much poorer when performed without DMF.	247
Epoxidation	Cyclohexene + O ₂ or PhIO	MeCN	TPPFeCl or PFTPPFeCl homogenous, or MCM-41- immobilised PETPPEeCl	25-80	1–127	Yes	Yes	Leaching was less with the CXL than in the absence of CO_2 .	115,142,248,249
Epoxidation	Propene + H_2O_2	MeOH, MeCN, ⁱ PrOH or	MeReO ₃ , optionally with <i>N</i> -bases	25–70	2.7-49.3	—	No	Pressurisation with N_2 was more effective than with CO_2 .	125,129
Epoxidation	Cyclohexene + H ₂ O ₂ (formed <i>in situ</i> from H ₂ + O ₂)	Neat or with CHCl ₃	Homogeneous Pd(0) or (II) or 1 wt% Pd/C +	25	131	—	_	H ₂ O ₂ forms in CO ₂ -rich phase and then condenses into the aqueous phase.	168,169
Epoxidation	Cyclohexene + H ₂ O ₂ , optionally with NaHCO ₃ or hydroxy- 1,1-ethanephosphinic acid (HEDP)	Neat, H ₂ O, DMF, DMA, MeOH, PC	None or NaHCO ₃	40	120	_		Peroxycarbonic acid formed <i>in situ</i> catalyses reaction.	250
Epoxidation	3-Cyclohexen-1- carbxylate sodium salt + H ₂ O ₂ + hydroquinone as stabilicor	H_2O , optionally with DMF	None or NaHCO ₃	40	120	_	_	Peroxycarbonic acid formed <i>in situ</i> catalyses reaction—used to show reaction takes place in acutory phase	250
Epoxidation	Alkene + H ₂ O ₂	EtOH + NaOH _(aq) buffer, with or without an ionic	None or tetraheptyl ammonium bromide	23–24	241	_	_	Reaction believed to go <i>via</i> a peroxycarbonate intermediate.	169
Epoxidation	Alkene + H ₂ O ₂	suffactant H_2O , optionally with MeCN, THF or ^t BuOH	Pyridine or pyridine- <i>N</i> - oxide	30-40	48–60	Yes		CO ₂ used to homogenise organic and aqueous components; <i>in situ</i> peroxycarbonic acid formation cited as the reason for the good performance	210
Epoxidation	Cyclohexene + pivaldehyde + O ₂	FC-75–90% fluorinated butyltetra- hydrofuran	Co(II) carboxylate	25	0–70			CO ₂ used to render catalyst (fluorous) and reactant (organic) phases miscible for reaction, and then depressurised to separate the phases for catalyst reacycling	251
Esterification	AcOH + EtOH	_	<i>In situ</i> carbonic acid	60	58.6	—	_	Shifts equilibrium due to CO ₂ extraction of EtOAc from liquid into vapour phase	252
Esterification	AcOH + EtOH	_	p-TsOH	60	60–160	Yes	Yes	Shifts equilibrium due to CO ₂ extraction of EtOAc from liquid into vapour phase.	253

Reaction	Substrate(s)	Added solvent(s)	Catalyst(s)	T∕°C	P/bar	CXL> SCF? ^a	>ambient P? ^b	Comment(s)	Ref.
Esterification	Ethylene glycol +	_	p-TsOH	50	0–200	_	_	Phase behaviour dictates	254
Esterification	propionic acid Oleic acid + I-dodecanol	_	Lipozyme RM IM (immobilised lipase from <i>Rhizomucor</i> <i>michei</i>)	60	60–410	Yes	_	equilibrium concentrations. Phase behaviour of reaction investigated thoroughly.	255
Esterification	Glycerol + acetic acid	_	Amberlyst 15	100–150	65–300	—	—	Continuous flow fixed bed reactor; catalyst stable over 25 h on stream	256
Esterification	Citronellol + lauric acid	Acetone, <i>n</i> -heptane, or 2-methyl- 2-butanol	Immobilised lipase Novozym 435 (<i>Candida</i> <i>Antarctica</i>)	50–70	80–200	_	_	Water immiscibility of acetone (under CO_2 pressure) blamed for poorer performance compared to other co-solvents.	257
Esterification	Glucose + palmitic acid	Acetone	Novozym 435	40–60	1–105		Yes	Suggested mechanism has the reaction taking place in the vapour phase (where there is less H_2O) to allow the equilibrium to be shifted.	258
Esterification	Caffeic acid + sucrose	K ₃ PO _{4(aq)}	Sucrose	42	0-250	_	No	<i>In situ</i> carbonic acid believed to	214
Etherification	1,6-Hexanediol or 1,4-propandiol + MeOH, EtOH or		Amberlyst 15	110–170	40-425	_	_	deactivate enzyme catalyst. Continuous flow fixed bed reactor; CXL favours di-etherification and scCO ₂	183
Etherification	1,4-Butandiol	MeOH	Deloxan ASP	100-200	60–200	—	_	Continuous flow fixed bed	174
(cyclisation) Formylation	Morpholine + CO ₂ + H ₂	Neat, H ₂ O or NEt ₃	RuCl ₂ (dppe) ₂	100	215		_	reactor. Initial part of reaction not a CXL as only solid and vapour phases present—increasing quantities of product result in an additional liquid phase	259
Hydration	Cyclohexene + H_2O	_	In situ carbonic	300	0-55	—	Yes	CO_2 enhances reaction rate.	260
Hydroformylation	1-Hexene + CO + H ₂	Toluene	Homogeneous or SiO ₂ - immobilised Rh(acac) ₃ + PEtPh ₂	75	181.6	Yes	Yes	n/iso ratio largely unchanged in the presence of CO ₂ .	261
Hydroformyl- ation	1-Octene + CO + H ₂	Acetone or neat	Various homogeneous Rh	30–90	6–210	Yes	Yes	Increasing the CO ₂ pressure at the end of the reaction precipitates the catalyst so it can be separated and reused	124,262
Hydroformyl- ation	1-Octene + CO + H ₂	_	Rh(acac)(CO) ₂ + ionic tri- alkylphosphine ligands	100	125–140	_	_	Continuously fed batch vessel with CO ₂ -assisted extraction of products from catalyst- containing liquid phase; Rh leaching could be kept very low.	171
Hydroformyl-	Cyclohexene + CO_2 +	Neat or	$Ru_3(CO)_{12}$ with	50-150	20-80	—	—	CO formed <i>in situ</i> from CO_2	221
Hydroformyl- ation	Styrene or 2-vinylnapthalene + $CO + H_2$		$[Rh(cod)_4](BF_4) + (R,S)-3-H^2F^6-BINAPHOS$	45	205–220	_	—	CO ₂ reduces melting point of 2-vinylnaphthalene; ligand designed to reduce the required fluorination.	199
Hydroformyl- ation	Functionalised bicyclic internal alkene + CO + H ₂	H ₂ O with or without MOPS buffer	Rh(acac)(CO) ₂ with and without $P(C_6H_4-p-(CH_2)_2C_6F_{13})_3,$ or	60	n/a	—	_	Semi-batch operation with catalyst retained in CO ₂ -rich phase; H ₂ O-rich liquid phase could be periodically replaced with fresh reactants.	165
Hydrogenation	Cyclohexene + H ₂	_	Rh(hfac)(CO) ₂ 5 wt% Pd + 5% wt% Pt/Deloxan APII	>100	60–80	_	_	Continuous flow fixed bed reactor.	173
Hydrogenation	Cyclohexene + H ₂	_	1 wt% Pd/Amberlyst 15	60	40–180	No	_	Catalyst activity good long-term.	191
Hydrogenation	Cyclohexene + H ₂	_	1 wt% Pd/SiO ₂	40	0–140	No	Yes	Catalyst leaching during CXL operation was comparable to conventional organic solvents	263
Hydrogenation	Tetralin + H_2	—	$5 wt\% Rh/C or Al_2O_3$	60	60–340	—	_	Single phase favours higher conversion but lower selectivity.	264

 Table 1
 (Contd.)

Reaction	Substrate(s)	Added solvent(s)	Catalyst(s)	T∕°C	P/bar	CXL> SCF? ^a	>ambient P? ^b	Comment(s)	Ref.
Hydrogenation	Tetralin + H ₂	Decane	0.5 wt% Pt/ γ -Al ₂ O ₃	260–320	34.5–89.6	Yes	Yes	Continuous fixed bed reactor; also run with CO ₂ in the absence of a vapour phase in upflow ("liquid-full mode") to decouple mass transfer effects from kinetics; a relatively small amount of CO ₂ is required in the gas feed for optimum benefits (25	123
Hydrogenation	Naphthalene + H_2	_	5 wt% Rh/C	60	110–280	_	_	wt% CO ₂). Single phase favours higher conversion but lower selectivity; CO ₂ lowers melting point of naphthalene so that it is a liquid	198
Hydrogenation	Styrene + H ₂	H_2O	RhCl(TPPDS)3	40	275.9	—	Yes	CXL was not as good as a	265
Hydrogenation	Styrene, citral or nitrobenzene + H_2	_	5 wt% Pd/C	50	0–130	—	Yes	CO_2+H_2O emulsion. Conversion did not change significantly between CO_2 , N_2 or	266
Hydrogenation	Styrene + H ₂	Cyclohex- ane	$[RhCl(P(C_6H_4-p-CH_2CH_2)(CF_2)_2F)_3)_3] + fluorous silica$	40	90	_	_	H ₂ vapour phases. CO ₂ pressure also used to precipitate catalyst so that it sticks to the fluorous silica, ready for re-use in further reactions.	204
Hydrogenation	α -Methylstyrene + H ₂ 2	_	1 wt% Pd/C	50	70–130	—	_	Improved rate of reaction believed to be due to increased H ₂ solubility in liquid phase.	267
Hydrogenation	Limonene + H ₂	_	1 wt% Pd or Pt/C	50	125–160	Yes	_	Batch vessel with liquid phase continuously recirculated through a fixed bed reactor; limonene concentration in liquid phase a more important factor than the H_2 concentration in the liquid phase	128,130
Hydrogenation	α-Pinene	-	1 or 10 wt% Pt/C	50	70–170	Yes	_	Batch vessel with liquid phase continuously recirculated through a fixed bed reactor; α -pinene adsorption on to the catalyst is the rate-determining step at single-phase conditions—not the availability of H ₂	207,208
Hydrogenation	Phenylacetylene + H ₂	_	Amorphous Pd ₈₁ Si ₁₉	55–85	50-200	No	_	Continuous flow fixed bed reactor; H ₂ excess needed to be minimised for single-phase conditions to be reasonably accessible	175
Hydrogenation	Dehydroisophytol + H_2	—	Amorphous Pdo Sixo	42–120	50-250	No	_	Continuous flow fixed bed	178
Hydrogenation	Benzaldehyde + H_2	—	5 wt% Pt/C	50	100-200	—	No	FTIR studies on interactions of	119
Hydrogenation	Acetophenone + H_2	_	5 wt% Pd/Deloxan	240	40–140	—	_	Different pressures favoured different products	173
Hydrogenation	1- or 2-phenylethanol + H ₂	_	5 wt% Pt, Pd, Rh or Ru/C or	50	80–230	No	_	5 wt% Ru/C had the highest selectivity to the desired cyclohexylethanols	268
Hydrogenation	Allyl alcohol + H ₂	FC-40 (95% perfluorin- ated tributyl- amine)	Fluorous- soluble dendrimer encapsulated Pd ⁰ nanoparticles	25	0–70		Yes	CO ₂ used to make catalyst (fluorous) and reactant (organic) phases miscible for reaction, then depressurised to separate the phases for catalyst recycling.	251
Hydrogenation	Maleic anhydride + H ₂		RuCl ₂ (PPh ₃) ₃	140-200	0–160	No	Yes	CO ₂ extracted out product from the H ₂ O produced in reaction—reducing hydrolysis	269
Hydrogenation	Maleic anhydride + H_2	_	1 wt% Pd/AlaOa	100-225	42–141	No	Yes	Catalyst loses selectivity after recycling more than 7 times	270,271
Hydrogenation	Levulinic acid + H ₂	H ₂ O	5 wt% Pd/Al ₂ O ₃	180–200	100	_	_	Continuous flow fixed bed reactor; γ -valerolactone can be separated conveniently from the H ₂ O <i>via</i> phase separation post- reactor without decrease units	188
Hydrogenation	2-Butyne-1,4-diol + H ₂	_	Ni and Mn contained in SS 316 reactor wall	50	100–200	_	_	CO ₂ lowers melting point of 2-butyne-1,4 diol so that it can be a liquid at the reaction conditions.	200

Reaction	Substrate(s)	Added solvent(s)	Catalyst(s)	T∕°C	P/bar	CXL> SCF? ^a	>ambient <i>P</i> ? ^b	Comment(s)	Ref.
Hydrogenation	2-Butylphenol	_	5 wt% Rh/C with or without	40-80	0–220	No	Yes	Presence of HCl improves selectivity for the <i>cis</i> product.	272
Hydrogenation	Benzophenone imine + H ₂	THF	$[Rh(cod)-(PPh_3)_2]^+[PF_6]^-$	23–25	0–30	Yes	_	CO ₂ protects amines <i>in situ</i> from further reaction to	216
Hydrogenation	Benzonitrile or phenylacetonitrile + H ₂	THF	$RhH(P^iPr_3)_3$	23–25	0–25	—	_	produce secondary amines. CO ₂ presented as an easily removable alternative protecting group to di- <i>tert</i> -butyl	216
Hydrogenation	Nitrobenzene + H ₂	_	5 wt% Pt, Pd, Ru or Rh/C, SiOa or AlaOa	35	100–180	—	_	Single phase improves selectivity but reduces	273,274
Hydrogenation	<i>p</i> -Chloronitrobenzene + H ₂	MeOH	Ni-B nanoparticles	70–90	35.4–70.9		Yes	CO ₂ shown to enhance reactivity by comparing the reaction with different partial pressures of CO ₂ (the balance being H ₂) at the same <i>total</i> pressure.	127
Hydrogenation	<i>o</i> -Chloronitrobenzene + H ₂	_	5 wt% Pd/C	35	0–200	—	Yes	Selectivity to <i>o</i> -chloroaniline increased when performed in a single-phase.	275
Hydrogenation	o-Chloronitrobenzene	—	1 wt% Pt/C	40	0–161	No	Yes	Presence of CO ₂ suppressed	276
Hydrogenation	+ H_2 Substituted nitrobenzenes + H_2	_	5 wt% Pt/C	50	90–180	No	Yes	Selectivity and conversion improved under single phase	277
Hydrogenation	2-Cyclohexen-1-one	_	1 wt% Pt/MCM-48	40	90–160	No	—	Selectivity significantly improves under single phase conditions	278
Hydrogenation	Isophorone + H ₂	_	2 wt% supported Pd or 5 wt% Pd/Deloxan	70–116	~120	Yes	_	Continuous flow fixed bed—reaction successfully scaled-up to 1000 tonnes per	170,279
Hydrogenation	4-Oxoisophorone + H_2	_	1 wt% Pd/Al ₂ O ₃	50-200	99–212	No	Yes	Catalyst deactivated more slowly in the presence of CO_2	280
Hydrogenation	Cinnamaldehyde + H ₂	H_2O	$RuCl_3 + PPh_3$, $Pd(OAc)_2$ or $PhCl_2 + TPPTS$	40–50	40–140	Yes	Yes	Different products could be formed selectively with different	281
Hydrogenation	Cinnamaldehyde + H ₂	Neat, H ₂ O or DMF	RuCl ₃ + PPh ₃ , PPh ₂ (C ₆ F ₅), PPh(C ₆ F ₅) ₂ or TPPTS	50–70	60–220	Yes	Yes	Reaction run in different configurations with 1, 2 or 3 fluid phases.	120
Hydrogenation	Cinnamaldehyde + H ₂	H_2O	Ru(H)(Cl) (TPPTS) ₃ or $Ru(H)_2(TPPTS)_4$	70	120-200	Yes	—	Reaction run in either 2 or 3 fluid phases.	282
Hydrogenation	Cinnamaldehyde + H_2	—	$\operatorname{Ru}(H)_2(HHHS)_4$ $\operatorname{Ru}Cl_3 +$	50	125-200	Yes	Yes	Both conversion and selectivity	283
Hydrogenation	Cinnamaldehyde + H ₂	_	5 wt% Pt/C	50	100-200	No	Yes	FTIR studies on interactions of	119
Hydrogenation	Cinnamaldehyde + H ₂	_	Pt/Al, Si or Ti-modified MCM-48 (or unmodified)	20-80	7–210	_	_	cinnamaldehyde with CO ₂ . Different catalysts performed better in different phase systems, and all catalysts could be easily recycled with minimal	284– 286
Hydrogenation	Cinnamaldehyde + H ₂	—	10 wt% Pd/C, optionally with KOAc or	50	40–180	—	Yes	deactivation. Conversion good but selectivity moderate.	287
Hydrogenation	Cinnamaldehyde + H ₂	_	R ₂ CO ₃ Ru–Pt/MCM- 48	50	100–210	Yes	Yes	Catalyst very selective for formation of the unsaturated	288
Hydrogenation	α,β -Unsaturated	_	$1 \ wt\% \ Pt/Al_2O_3$	50	70-220	No	_	Selectivity showed strong	289,290
Hydrogenation	aldehyde + H_2 Citral + H_2	_	RuCl ₃ , RhCl ₃ , Pd(OAc) ₂ or Ni(OAc) ₂ with PPh ₂	65	60–160	No	_	pressure dependence. RuCl ₃ + PPh ₃ particularly selective for the unsaturated alcohols.	291
Hydrogenation	Citral + H ₂	_	1 wt% Pt/MCM-41	35-80	40–170	—	_	Possible to tune product selectivity between <i>cis</i> - and <i>trans</i> -products by changing the CO ₂ deposit:	292
Hydrogenation	Citral + H ₂	_	1 wt% Pd/MCM-48	50	110-210	—	Yes	CO ₂ density. Complete hydrogenation of both of the C=C bonds in citral possible.	293

Reaction	Substrate(s)	Added solvent(s)	Catalyst(s)	T∕°C	P/bar	CXL> SCF? ^a	>ambient P? ^b	Comment(s)	Ref.
Hydrogenation	Citral + H ₂		1 wt% Pt or 3.5 wt% Pt + Ru/MCM-48	35-70	100-210	_		Negligible catalyst deactivation; different catalysts preferred different	294
Hydrogenation	Citral + H ₂	_	5 wt% Pd/Al ₂ O ₃	40	30–190	No	_	Performed in batch and continuous flow fixed bed reactors; the batch reaction resulted in much less hydrogenation of the isolated C=C bond in citral.	179
Hydrogenation	Unsaturated aldehyde + H ₂	_	0.5 or 1 wt% Pd/Al ₂ O ₃ (3 mm egg-shell pellets)	50–300	120–200	_	_	Kinetics from a Berty-type differential internal recycle reactor; applied to a pilot scale 2 m long (4 L volume) continuous flow fixed bed reactor (downflow)	111,172,212
Hydrogenation	Methyl 2-acetamidoacrylate + H ₂	_	$[Rh(cod)_2](BF_4) + (R,S)-3-H^2F^6-BINAPHOS$	40	n/a		_	Asymmetric hydrogenation; CO ₂ reduces melting point of solid substrate; ligand designed to reduce necessary fluorination	199
Hydrogenation	Polar alkenes + H ₂	H ₂ O	[Rh(cod) ₂](BF ₄) optionally with fluorinated phosphines	40–58	~260	_	_	Catalyst in CO ₂ -rich phase and reactants in aqueous phase; catalyst could be recycled up to 9 times without depressurisation.	166,167
Hydrogenation	2-(6'-Methoxy-2'- napthyl)acrylic acid + H ₂	МеОН	[(S)- Ru(BINAP)Cl]Cl + p-cymene + NEt ₂	5–45 I	95–128	_		Catalyst believed to have deactivated with the trace O_2 present in the CO ₂ .	295,296
Hydrogenation	<i>rac</i> -Sertraline imine + H ₂	THF	5 wt% Pd/CaCO ₃ , 5 wt% Pd or Pt/C	25-120	0–175	_	Yes	Very high diastereoselectivity; performance better than publiched Pfizer process	33
Hydrolysis	β -Pinene + H ₂ O	MeOH, EtOH or acetone	In situ carbonic acid	25–75	14–21	—	Yes	Probably LLV phase system with CO ₂ enhancing miscibility of	224
Hydrolysis	Sunflower or soybean oil + H_2O	Phosphate buffer	Lipase 100T (from <i>Aspergillus</i>	30–60	0–200	_	Yes	membrane reactor; membranes used to retain	297
Hydrolysis	Carboxymethylcellulose + H_2O	Phosphate buffer	nger) Cellulase from <i>Humicola</i> <i>insolens</i> immobilised on polysulfon membrane	45	0–100	_	Yes	enzyme inside reactor. Continuous flow tubular membrane reactor; catalyst immobilised on membrane which simultaneously separates the products from unreacted substrates.	297
Oxidation	Cyclohexane + O ₂	_	PFTPPFeCl	32-70	1–190	Yes	Yes	Best reaction outcome is close to the critical pressure.	298
Oxidation	Cyclohexane + O ₂	_	MnAPO-5 molecular sieve	125	N/A	—	—	Conversion increased in a CXL, but selectivity better when a single phase	299
Oxidation	Cyclohexane or various cyclic alkenes or aromatics $+ O_2$	AcOH	$Co(OAc)_2$ or Co(salen) + N- hydroxysuccinam	21–125 iide	8.3–65.8	—	Yes	CO ₂ reduces induction period, some unexpected yet selective products formed.	300
Oxidation	Xylenes + O ₂	AcOH + H ₂ O	$Co(OAc)_2 + Mn(OAc)_2 + HBr$	185–195	28	—	Yes	$O_2 + CO_2$ believed to form a peroxycarbonate complex in situ	301-303
Oxidation	Toluene or <i>p</i> -toluic acid + O_2	AcOH	Co(OAc) ₂ and mixtures with other metal acetates and ketones	80	60	_	Yes	CO_2 reduced the induction period substantially.	304
Oxidation	DTBP + O ₂	MeCN or CH ₂ Cl ₂	$Co^{II}(salen),$ $Co^{II}(salen^*)$ or $Co^{II}(acacen),$ with optional basic axial ligands	25–90	1–207	Yes	Yes	Increased polarity of CXL <i>versus</i> scCO ₂ improves conversion by stabilising the transition state; includes mechanistic studies.	115,116,142,248,305

Reaction	Substrate(s)	Added solvent(s)	Catalyst(s)	T∕°C	<i>P</i> /bar	CXL> SCF? ^a	>ambient P? ^b	Comment(s)	Ref.
Oxidation	$DTBP + O_2$	MeCN	Co ^{II} (salen)- based,	35–80	1–125	No		Catalyst nature meant that the superior mass transport	306
Oxidation	2- or 1-octanol + O ₂	_	co-polymerised into PMMA 0.5 wt% Pd/Al ₂ O ₃	80–140	75–125	_	Yes	properties of secO ₂ were necessary for good conversions. Continuous flow fixed bed; all reactions performed under a biphasic system; no deactivation	176
Oxidation	Benzyl alcohol + O ₂	Neat or toluene	0.5 wt% Pd/Al ₂ O ₃ (optionally with 0.05 wt% Pb) or C, or 0.5% Pt or Ru/Al ₂ O ₂	60–100	65–170	No	_	observed. Continuous flow fixed bed; no catalyst deactivation observed; <i>in situ</i> XAS and ATR-IR of catalyst; transmission IR of fluid phases.	177,180,184,187
Oxidation	Cinnamyl alcohol + O ₂	Toluene, THF or	0.5 wt% Pd, Pt or $\text{Ru}/\text{Al}_2\text{O}_3$	80	90–170	Yes	—	Continuous flow fixed bed; <i>in</i> <i>situ</i> ATR-IR, transmission IR,	185
Oxidation	Geraniol + O ₂		5 wt% Pd/Al ₂ O ₃ or SiO ₂	80	30–195	Yes	_	Continuous flow fixed bed, <i>in</i> situ ATR-IR and transmission IR; significant coking meant conversion and selectivity never etabilised property	186
Oxidation	Benzyl alcohol, geraniol or 1-octanol +	_	1 wt% Au/TiO ₂ , C or Fe ₂ O ₃	80–120	133–167	Yes	Yes	Base not required for reaction; observation of reaction by	307
Oxidation	O ₂ Cyclohexane + H ₂ O ₂	Neat, AcOH, EtOH or acetone	Zeolite TS-1	60–80	0–180		_	Increasing CO ₂ pressure increases yield in three-phase region until transition to two phases where further influence is limited	94
Oxidation	Cyclohexene + NaIO ₄ , Ce(IV) with AcOOH, or NaOCl	H ₂ O	RuO4	40	166.5– 275.9		_	Bicarbonate produced from CO_2 dissolution in aqueous phase believed to be responsible for poor eaterway activity.	308
Oxybromin-ation	Phenols or anilines + NaBr, KBr, NH ₄ Br or Bu ₄ NBr + H_2O_2 (optionally with NaHCO ₂)	H ₂ O	_	40	100–110		Yes	In situ formation of peroxycarbonic acid ³⁰⁹ believed to be responsible for the improvement in performance.	250
Reduction	Aryl alcohols + Fe	H_2O	_	130–150	0–220	—	_	Addition of buffer solution used to show <i>in situ</i> carbonic acid did	310
Reduction	Benzonitrile or phenylacetonitrile +	EtOH	NiCl ₂	30	30	—	_	CO ₂ protects amines <i>in situ</i> from further reaction to	216
Sequential	Alkyne + CO + H_2O	1,4- dioxane	$PdI_2 + KI$	80	40–50	—	—	CO_2 interferes in the catalytic cycle by acting as an H-acceptor.	311
Synthesis of carbonates	$MeOH + MeI + CO_2$		K ₂ CO ₃	80–120	~113–146	_	_	Reaction rate is higher in the critical region (<i>i.e.</i> either side of the critical point).	312
Synthesis of carbonates	MeOH or a dimethyl acetal + CO ₂	_	Bu ₂ Sn(OMe) ₃	180	15.2–2027	No	Yes	Rate continues to increase linearly with increasing pressure after the critical point (304 bar)	313
Synthesis of carbonates	Alcohol + MeI or EtI + CO ₂	_	Inorganic carbonate base	70	0–150	Yes	Yes	Increasing pressure reduces formation of Me ₂ O by-product.	314
Synthesis of cyclic carbonates	Ethylene oxide + CO ₂	_	(salen)AlX (X = Cl, Et or OMe) with TBAB, TBACl or TBAI	10–120	40–160		_	Temperature drastically changes partitioning of reactants between liquid and vapour phases; phase transitions as a function of conversion result in different rates of reaction at different starges	315
Synthesis of cyclic carbonates	Propylene oxide + CO ₂	_	SiO ₂ - immobilised	64–149	110	Yes	Yes	Phase behaviour changes significantly as propylene carbonate is formed	211
Synthesis of cyclic carbonates	Propylene or styrene epoxides + CO_2	_	Mn ^{III} (substituted salen) homogeneous or immobilised	1 50–200	N/A	Yes	_	Extensive IR and XAS study on liquid phase and catalyst.	316,317
Synthesis of cyclic carbonates	Styrene + O_2 + CO_2	THF or toluene	Rh ¹ homogeneous	~40-80	1–50	—	No	Styrene oxide formed <i>in situ</i> then coupled with CO ₂	318
Synthesis of cyclic carbonates	Styrene + t BuOOH or H ₂ O ₂ + CO ₂		TBAB	60–90	0–180	—		Complicated dependence on pressure due to the way the phase behaviour alters with conversion.	319

Reaction	Substrate(s)	Added solvent(s)	Catalyst(s)	T∕°C	<i>P</i> /bar	CXL> SCF? ^a	>ambient P? ^b	Comment(s)	Ref.
Synthesis of 2-oxa-zolidinones	Various aminoalcohols + CO_2 , DCC as	_	_	20–40	150	No		Solid carbamic acid/carbamate phase usually present.	215
Synthesis of alkyl-carbamates	3,4-Dimethoxy- phenethylamine +	_	_	1–190	1–190	—	Yes	Yields were moderate.	320
Synthesis of alkyl-carbamates + Acyl-Pictet– Spengler	3,4-Dimethoxy- phenethylamine + DMC or DBC, then aldehyde + 9 mol dm ⁻³ H_2SO_4 or 50 v/v %	_	_	130	140–160		_	Three phases present: H ₂ O-rich liquid, DMC-rich liquid, and CO ₂ -rich vapour phase.	320
Synthesis of methyl- carbamates	DMC + various primary amines (some hydroxy-substituted)	_	_	5–200	130	Yes	Yes	Three phases present: DMC-rich liquid, molten carbamate-rich liquid, and CO ₂ -rich vapour phase: mechanistic study	217
Trans- esterification	Glycerol monostearate + MeOH	_	Concentrated $H_2SO_{4(aq)}$	60–70	65–105	—	Yes	CO ₂ improves mutual miscibility of the 2-liquid phases compared to ambient.	209

^{*a*} Does the reaction run better in 2 phases (CXL) than as a single phase with or without the added solvent? ^{*b*} Does the reaction work better in 2 phases than under "ambient" conditions (*i.e.* open to atmosphere, 1 bar CO₂, or a high pressure of an inert gas)?

Table 2	Reactions i	in class	I and	II GXI	_s using	gases	other	than	CO	2
---------	-------------	----------	-------	--------	----------	-------	-------	------	----	---

Reaction	Substrate(s)	Added solvent(s)	Catalyst(s)	T∕°C	<i>P</i> /bar	GXL> SCF?"	>ambient P? ^b	Comment(s)	Ref.
Acetal formation	Cyclohexanone + MeOH	CO ₂ or ethane	<i>In situ</i> carbonic acid	25	40	_	_	Reaction does not occur in the absence of CO_2 as it is needed to form the acid catalyst <i>in situ</i>	197
Epoxidation	Ethylene + 50% $H_2O_{2(aq)}$	MeOH	MeReO ₃ + pyridine <i>N</i> -oxide	20–40	16–50	_	_	Lower temperatures meant no decomposition of H_2O_2 to form O_2 as in the conventional process—this would lead to hazardous flammable gas mixtures	321
Hydration	1- and 2-butene mixture + H_2O		_	200	200	_	_	Butene in vapour phase strips out 2-butanol from aqueous phase to shift equilibrium.	3
Hydrogenation	CO ₂ +H ₂	Neat, ethane, or CHF ₃ with MeOH + NEt ₂	[RuCl(OAc) (PMe ₃) ₄]	50	0–60	_	_	Ethane reduced TON relative to neat CO ₂ , but fluoroform increased it by ~15%; other solvent additives tried with limited success	149
Hydrogenation	Ethyl pyruvate + H ₂	Ethane or CO_2	Cinchonidine- modified 5 wt% Pt/Al ₂ O ₃	25–140	40–125	No	_	Continuous flow fixed bed reactor; CO_2 a poorer choice of solvent due to formation of poisoning CO from CO ₂ hydrogenation	227,228
Hydrogenation	Fatty acid methyl esters + H ₂	Propane	Cu-based (Cu-1985 T) then 2 wt% Pd/SiO ₂ - Al ₂ O ₃ zeolite (2 steps)	280	150	No	_	Rapid drop in reaction rate with condensation of a liquid phase.	229
Protonation	Sodium acetate, propionate or butanoate	H_2O with CO_2 + Me_2O	(- 500ps)	60–90	120– 220		_	<i>In situ</i> carbonic acid protonates the acid salt so it is soluble enough in the vapour phase to be extracted out.	230

^{*a*} Does the reaction run better in 2 phases (GXL) than as a single phase with or without the added solvent? ^{*b*} Does the reaction work better in 2 phases than under "ambient" conditions (*i.e.* open to atmosphere, 1 bar CO₂, or a high pressure of an inert gas)?

Acknowledgements

We thank the EPSRC for a studentship for GRA and Astra-Zeneca for additional funding. We also thank Dr Andy Wells, Dr Jie Ke and Dr Richard Bourne for helpful discussions.

Notes and references

- 1 P. E. Savage, S. Gopalan, T. I. Mizan, C. J. Martino and E. E. Brock, AIChE J., 1995, 41, 1723-1778
- 2 P. G. Jessop, Top. Catal., 1998, 5, 95-103.
- 3 P. G. Jessop and W. Leitner, Chemical Synthesis Using Supercritical Fluids, Wiley VCH, Weinheim, 1999.
- 4 A. Baiker, Chem. Rev., 1999, 99, 453-473.
- 5 W. Leitner, Comptes Rendus Acad. Sci. Ser. II C, 2000, 3, 595-600.
- 6 T. Ikariya and Y. Kayaki, Catal. Surv. Jpn., 2000, 4, 39-50.
- 7 J. R. Hyde, P. Licence, D. Carter and M. Poliakoff, Appl. Catal., A, 2001, 222, 119-131.
- 8 W. H. Hauthal, Chemosphere, 2001, 43, 123-135.
- 9 R. S. Oakes, A. A. Clifford and C. M. Rayner, J. Chem. Soc., Perkin Trans. 1, 2001, 917-941.
- 10 B. Subramaniam, C. J. Lyon and V. Arunajatesan, Appl. Catal., B, 2002, 37, 279-292
- 11 W. Leitner, Acc. Chem. Res., 2002, 35, 746-756.
- 12 E. J. Beckman, J. Supercrit. Fluids, 2004, 28, 121-191.
- 13 D. Prajapati and M. Gohain, Tetrahedron, 2004, 60, 815-833.
- 14 Ž. Knez, Chem. Eng. Res. Des., 2004, 82, 1541-1548.
- 15 T. Matsuda, T. Harada and K. Nakamura, Curr. Org. Chem., 2005, 9 299-315
- 16 S. Campestrini and U. Tonellato, Curr. Org. Chem., 2005, 9, 31-47
- 17 P. G. Jessop, J. Supercrit. Fluids, 2006, 38, 211-231.
- 18 C. M. Rayner, Org. Process Res. Dev., 2007, 11, 121-132
- 19 H. R. Hobbs and N. R. Thomas, Chem. Rev., 2007, 107, 2786-2820
- 20 S. Cantone, U. Hanefeld and A. Basso, Green Chem., 2007, 9, 954-971.
- 21 S. K. Karmee, L. Casiraghi and L. Greiner, Biotechnol. J., 2008, 3, 104 - 111.
- 22 A. Kruse and H. Vogel, Chem. Eng. Technol., 2008, 31, 23-32.
- 23 T. Seki, J.-D. Grunwaldt and A. Baiker, Ind. Eng. Chem. Res., 2008, 47, 4561-4585
- 24 R. Ciriminna, M. L. Carraro, S. Campestrini and M. Pagliaro, Adv. Synth. Catal., 2008, 350, 221-226.
- 25 B. Subramaniam, R. A. Rajewski and K. Snavely, J. Pharm. Sci., 1997, 86, 885-890.
- 26 R. Thiering, F. Dehghani and N. R. Foster, J. Supercrit. Fluids, 2001, 21, 159-177.
- 27 J. Jung and M. Perrut, J. Supercrit. Fluids, 2001, 20, 179-219.
- 28 E. Reverchon and G. Della Porta, Chem. Eng. Technol., 2003, 26, 840-845
- 29 A. Martin and M. J. Cocero, Adv. Drug Delivery Rev., 2008, 60, 339-350.
- 30 C. M. Harris, Anal. Chem., 2002, 74, 87A-91A.
- 31 Will SFC challenge SMB for large-scale purifications?, http://www.drugdiscoverynews.com/index.php?newsarticle=884, [last accessed 28 March 2008]
- 32 D. Berger, LC-GC Eur., 2007, 20, 164-166.
- 33 P. Clark, M. Poliakoff and A. Wells, Adv. Synth. Catal., 2007, 349, 2655-2659.
- 34 P. G. Jessop and B. Subramaniam, Chem. Rev., 2007, 107, 2666-2694.
- 35 M. Arai, S. Fujita and M. Shirai, J. Supercrit. Fluids, 2009, 47, 351 - 356
- 36 P. G. Jessop, R. R. Stanley, R. A. Brown, C. A. Eckert, C. L. Liotta, T. T. Ngo and P. Pollet, Green Chem., 2003, 5, 123-128.
- 37 S. V. Dzyuba and R. A. Bartsch, Angew. Chem., Int. Ed., 2003, 42, 148 - 150.
- 38 C. A. Eckert, C. L. Liotta, D. Bush, J. S. Brown and J. P. Hallett, J. Phys. Chem. B, 2004, 108, 18108-18118.
- 39 P. Lozano, T. De Diego and J. L. Iborra, Chim. Oggi, 2007, 25, 76-79.

- 40 S. Keskin, D. Kayrak-Talay, U. Akman and O. Hortaçsu, J. Supercrit. Fluids. 2007, 43, 150-180
- 41 B. Feng, Y. Hu, H. Li and Z. S. Hou, Chin. J. Org. Chem., 2008, 28, 381 - 389
- 42 A. Kordikowski, A. P. Schenk, R. M. Van Nielen and C. J. Peters, J. Supercrit. Fluids, 1995, 8, 205-216.
- 43 J. P. Hallett, C. L. Kitchens, R. Hernandez, C. L. Liotta and C. A. Eckert, Acc. Chem. Res., 2006, 39, 531-538
- 44 S. V. Olesik, J. Chromatogr. A, 2004, 1037, 405-410.
- 45 A. D. Leu, S. Y. K. Chung and D. B. Robinson, J. Chem. Thermodyn., 1991, 23, 979-985.
- 46 T. L. Chester and J. D. Pinkston, Anal. Chem., 2004, 76, 4606-4613.
- 47 M. J. Lazzaroni, D. Bush, J. S. Brown and C. A. Eckert, J. Chem. Eng. Data, 2005, 50, 60-65.
- 48 J. W. Ziegler, T. L. Chester, D. P. Innis, S. H. Page and J. G. Dorsey, ACS Symp. Ser., 1995, 608, 93-110.
- 49 S. P. Kelley and R. M. Lemert, AIChE J., 1996, 42, 2047-2056.
- 50 D. S. Bulgarevich, T. Sako, T. Sugeta, K. Otake, M. Sato, M. Uesugi and M. Kato, J. Chem. Phys., 1998, 108, 3915-3921.
- 51 R. L. Smith, C. Saito, S. Suzuki, S. B. Lee, H. Inomata and K. Arai, Fluid Phase Equilib., 2002, 194-197, 869-877
- 52 Y. W. Kho, D. C. Conrad, R. A. Shick and B. L. Knutson, Ind. Eng. Chem. Res., 2003, 42, 6511-6517.
- 53 Z. H. Li, T. C. Mu, T. Jiang, J. M. Du, G. Y. Zhao, J. L. Zhang, B. X. Han and Y. Huang, Spectrochim. Acta, Part A, 2004, 60, 1055-1059.
- 54 V. T. Wyatt, D. Bush, J. Lu, J. P. Hallett, C. L. Liotta and C. A. Eckert, J. Supercrit. Fluids, 2005, 36, 16-22
- 55 R. M. D. Nunes, L. G. Arnaut, K. M. Solntsev, L. M. Tolbert and S. J. Formosinho, J. Am. Chem. Soc., 2005, 127, 11890-11891.
- 56 J. L. Gohres, C. L. Kitchens, J. P. Hallett, A. V. Popov, R. Hernandez, C. L. Liotta and C. A. Eckert, Abstr. Pap. Am. Chem. Soc., 2006, 231.
- 57 R. R. Weikel, J. P. Hallett, C. L. Liotta and C. A. Eckert, Top. Catal., 2006, 37, 75-80
- 58 H. P. Li, S. Arzhantsev and M. Maroncelli, J. Phys. Chem. B, 2007, 111, 3208-3221.
- 59 J. W. Ford, J. Lu, C. L. Liotta and C. A. Eckert, Ind. Eng. Chem. Res., 2008, 47, 632-637
- 60 A. S. Cullick and M. L. Mathis, J. Chem. Eng. Data, 1984, 29, 393-396
- 61 S. Peter, E. Weidner and H. Jakob, Chem. Ing. Tech., 1987, 59, 59 - 62
- 62 P. Kashulines, S. S. H. Rizvil, P. Harriott and J. A. Zollweg, J. Am. Oil Chem. Soc., 1991, 68, 912-921.
- 63 H. O. Lee, J. P. Heller and A. M. W. Hoefer, SPE Reservoir Eng., 1991, November, 421-428.
- 64 Y. Cui and S. V. Olesik, Anal. Chem., 1991, 63, 1812-1819.
- 65 S. Peter and H. Jakob, J. Supercrit. Fluids, 1991, 4, 166-172.
- 66 C. A. Lockemann and E.-U. Schlünder, Chem. Ing. Tech., 1994, 66, 502-505.
- 67 C. A. Lockemann and E.-U. Schlünder, Chem. Eng. Process., 1995, 34, 487-493
- 68 S. T. Lee and S. V. Olesik, J. Chromatogr. A, 1995, 707, 217-224.
- 69 Y. Cui and S. V. Olesik, J. Chromatogr. A, 1995, 691, 151-162.
- 70 A. Blaha-Schnabel, A. Beyer, B. Czech, H. Jakob, H. Schiemann, E. Weidner and S. Peter, Chem. Eng. Commun., 1996, 146, 13-31.
- 71 M. J. W. Frank, J. A. M. Kuipers and W. P. M. van Swaaij, J. Chem. Eng. Data, 1996, 41, 297-302
- 72 A. Kumagai and C. Yokoyama, Int. J. Thermophys., 1998, 19, 1315-1323
- 73 A. Kumagai, Y. Kawase and C. Yokoyama, Rev. Sci. Instrum., 1998, **69**, 1441–1445.
- 74 A. Kumagai and C. Yokoyama, J. Chem. Eng. Data, 1999, 44, 227-229
- 75 D. Li, B. X. Han, Z. M. Liu, J. Liu, X. G. Zhang, S. G. Wang, X. F. Zhang, J. Wang and B. Z. Dong, Macromolecules, 2001, 34, 2195-2201.
- 76 T. Uchida, R. Ohmura, J. Nagao, S. Takeya, T. Ebinuma and H. Narita, J. Chem. Eng. Data, 2003, 48, 1225-1229.
- Y. W. Kho, D. C. Conrad and B. L. Knutson, Fluid Phase Equilib., 77 2003, 206, 179-193.
- 78 S. Bando, F. Takemura, M. Nishio, E. Hihara and M. Akai, J. Chem. Eng. Data, 2004, 49, 1328-1332
- 79 R. Sih, F. Dehghani and N. R. Foster, J. Supercrit. Fluids, 2007, 41, 148-157.

- 80 K. Liu and E. Kiran, Ind. Eng. Chem. Res., 2007, 46, 5453-5462.
- 81 Y. Houndonougbo, K. Kuczera, B. Subramaniam and B. B. Laird, Mol. Simul., 2007, 33, 861–869.
- 82 R. Sih, M. Armenti, R. Mammucari, F. Dehghani and N. R. Foster, J. Supercrit. Fluids, 2008, 43, 460–468.
- 83 R. Sih and N. R. Foster, J. Supercrit. Fluids, 2008, 47, 233-239.
- 84 A. S. Pensado, A. A. H. Padua, M. J. P. Comunas and J. Fernandez, *AIChE J.*, 2008, 54, 1625–1636.
- 85 B. Meyssami, M. O. Balaban and A. A. Teixeira, *Biotechnol. Prog.*, 1992, 8, 149–154.
- 86 K. L. Toews, R. M. Shroll, C. M. Wai and N. G. Smart, *Anal. Chem.*, 1995, 67, 4040–4043.
- 87 S. Hirai, K. Okazaki, H. Yazawa, H. Ito, Y. Tabe and K. Hijikata, *Energy*, 1997, 22, 363–367.
- 88 J. D. Holmes, K. J. Ziegler, M. Audriani, C. T. Lee, P. A. Bhargava, D. C. Steytler and K. P. Johnston, *J. Phys. Chem. B*, 1999, **103**, 5703–5711.
- 89 S. E. Hunter and P. E. Savage, Ind. Eng. Chem. Res., 2003, 42, 290–294.
- 90 J. M. Broering, E. M. Hill, J. P. Hallett, C. L. Liotta, C. A. Eckert and A. S. Bommarius, *Angew. Chem.*, *Int. Ed.*, 2006, **45**, 4670–4673.
- 91 K. Minami, T. Suzuki, T. Aizawa, K. Sue, K. Arai and R. L. Smith, *Fluid Phase Equilib.*, 2007, 257, 177–182.
- 92 C. Roosen, M. Ansorge-Schumacher, T. Mang, W. Leitner and L. Greiner, *Green Chem.*, 2007, 9, 455–458.
- 93 S. E. Hunter and P. E. Savage, AIChE J., 2008, 54, 516-528.
- 94 L. Gao, T. Jiang, B. X. Han, B. N. Zong, X. X. Zhang and J. C. Zhang, Aust. J. Chem., 2006, 59, 225–228.
- 95 See http://www.test-tube.org.uk/videos/pages_poliakoff_supercritical.htm for a live demonstration of the critical point, [last accessed 11 February 2009].
- 96 H. Saad and E. Gulari, J. Phys. Chem., 1984, 88, 136-139.
- 97 P. R. Sassiat, P. Mourier, M. H. Caude and R. H. Rosset, *Anal. Chem.*, 1987, **59**, 1164–1170.
- 98 M. A. Matthews, J. B. Rodden and A. Akgerman, J. Chem. Eng. Data, 1987, 32, 319–322.
- 99 A. T. Grogan, V. W. Pinczewski, G. J. Ruskauff and F. M. Orr, Jr., SPE Reservoir Eng., 1988, February, 93–102.
- 100 C. A. Lockemann and E.-U. Schlünder, J. Energy Heat Mass Transf., 1993, 15, 125–133.
- 101 S. T. Lee and S. V. Olesik, Anal. Chem., 1994, 66, 4498-4506.
- 102 C. A. Lockemann and E.-U. Schlünder, Int. J. Thermophys., 1995, 16, 611–618.
- 103 C. A. Lockemann and E.-U. Schlünder, *Chem. Eng. Process.*, 1996, 35, 29–33.
- 104 I. Souvignet and S. V. Olesik, Anal. Chem., 1998, 70, 2783-2788.
- 105 B. Xu, K. Nagashima, J. M. DeSimone and C. S. Johnson, J. Phys. Chem. A, 2003, 107, 1–3.
- 106 F. Tewes and F. Boury, J. Phys. Chem. B, 2005, 109, 3990-3997.
- 107 S. Chanfreau, P. Cognet, S. Camy and J. S. Condoret, J. Electroanal. Chem., 2007, 604, 33–40.
- 108 I.-H. Lin and C.-S. Tan, J. Supercrit. Fluids, 2008, 46, 112-117.
- 109 I.-H. Lin and C. S. Tan, J. Chem. Eng. Data, 2008, 53, 1886-1891.
- 110 B. Unlusu and A. K. Sunol, Chem. Eng. Sci., 2004, 59, 1923-1929.
- 111 L. Devetta, A. Giovanzana, P. Canu, A. Bertucco and B. J. Minder, Catal. Today, 1999, 48, 337–345.
- 112 H. F. Zhang, Z. M. Liu and B. X. Han, J. Supercrit. Fluids, 2000, 18, 185–192.
- 113 A. De Jong, A. Eftaxias, F. Trabelsi, F. Recasens, J. Sueiras and F. Stuber, *Ind. Eng. Chem. Res.*, 2001, 40, 3225–3229.
- 114 K. Bezanehtak, G. B. Combes, F. Dehghani, N. R. Foster and D. L. Tomasko, J. Chem. Eng. Data, 2002, 47, 161–168.
- 115 M. Wei, G. T. Musie, D. H. Busch and B. Subramaniam, J. Am. Chem. Soc., 2002, 124, 2513–2517.
- 116 M. Wei, G. T. Musie, D. H. Busch and B. Subramaniam, Green Chem., 2004, 6, 387–393.
- 117 K. Bezanehtak, F. Dehghani and N. R. Foster, J. Chem. Eng. Data, 2004, 49, 430–434.
- 118 X. F. Xie, J. S. Brown, D. Bush and C. A. Eckert, J. Chem. Eng. Data, 2005, 50, 780–783.
- 119 F. Y. Zhao, S. Fujita, S. Akihara and M. Arai, J. Phys. Chem. A, 2005, 109, 4419–4424.

- 120 S. Fujita, S. Akihara, F. Y. Zhao, R. X. Liu, M. Hasegawa and M. Arai, J. Catal., 2005, 236, 101–111.
- 121 Z. K. Lopez-Castillo, S. Aki, M. A. Stadtherr and J. F. Brennecke, *Ind. Eng. Chem. Res.*, 2006, 45, 5351–5360.
- 122 J. Z. Yin and C. S. Tan, *Fluid Phase Equilib.*, 2006, **242**, 111–117.
- 123 J. C. Chan and C. S. Tan, Energy Fuels, 2006, 20, 771-777.
- 124 H. Jin, B. Subramaniam, A. Ghosh and J. Tunge, AIChE J., 2006, 52, 2575–2581.
- 125 D. H. Busch, B. Subramaniam, H. Lee and T. Shi, US Pat., US2007093666-A1, 2006.
- 126 L. Zevnik and J. Levec, J. Supercrit. Fluids, 2007, 41, 335-342.
- 127 Y. C. Chen and C. S. Tan, J. Supercrit. Fluids, 2007, 41, 272-278.
- 128 E. Bogel-Łukasik, I. Fonseca, R. Bogel-Łukasik, Y. A. Tarasenko, M. N. da Ponte, A. Paiva and G. Brunner, *Green Chem.*, 2007, 9, 427–430.
- 129 H. J. Lee, T. P. Shi, D. H. Busch and B. Subramaniam, *Chem. Eng. Sci.*, 2007, **62**, 7282–7289.
- 130 E. Bogel-Łukasik, R. Bogel-Łukasik, K. Kriaa, I. Fonseca, Y. Tarasenko and M. N. da Ponte, J. Supercrit. Fluids, 2008, 45, 225–230.
- 131 Z. K. Lopez-Castillo, S. Aki, M. A. Stadtherr and J. F. Brennecke, *Ind. Eng. Chem. Res.*, 2008, 47, 570–576.
- 132 C. A. Lockemann and E. U. Schlünder, Int. J. Thermophys., 1995, 16, 611–618.
- 133 C. A. Lockemann and E. U. Schlünder, *Chem. Eng. Process.*, 1996, 35, 121–129.
- 134 H. Teng and A. Yamasaki, Int. J. Heat Mass Transfer, 1998, 41, 4315–4325.
- 135 H. Teng and A. Yamasaki, *Energy Conv. Manag.*, 2000, **41**, 929– 937.
- 136 J. Zappe, A. Wesch and K. H. Ebert, J. Colloid Interface Sci., 2000, 231, 1–7.
- 137 K. Ogasawara, A. Yamasaki and H. Teng, *Energy Fuels*, 2001, 15, 147–150.
- 138 C. Lin, G. Muhrer, M. Mazzotti and B. Subramaniam, *Ind. Eng. Chem. Res.*, 2003, 42, 2171–2182.
- 139 B. Arendt, D. Dittmar and R. Eggers, Int. J. Heat Mass Transfer, 2004, 47, 3649–3657.
- 140 D. Y. Yang, P. Tontiwachwuthikul and Y. G. Gu, Ind. Eng. Chem. Res., 2006, 45, 4999–5008.
- 141 D. Guha, H. Jin, M. P. Dudukovic, P. A. Ramachandran and B. Subramaniam, *Chem. Eng. Sci.*, 2007, **62**, 4967–4975.
- 142 G. Musie, M. Wei, B. Subramaniam and D. H. Busch, Coord. Chem. Rev., 2001, 219–221, 789–820.
- 143 N. P. Freitag and D. B. Robinson, *Fluid Phase Equilib.*, 1986, 31, 183–201.
- 144 A. Bamberger, G. Sieder and G. Maurer, J. Supercrit. Fluids, 2000, 17, 97–110.
- 145 P. G. Jessop, T. Ikariya and R. Noyori, *Chem. Rev.*, 1995, 95, 259– 272.
- 146 W. Leitner, Coord. Chem. Rev., 1996, 153, 257-284.
- 147 P. G. Jessop, F. Joo and C. C. Tai, Coord. Chem. Rev., 2004, 248, 2425–2442.
- 148 I. Omae, Catal. Today, 2006, 115, 33-52.
- 149 C. A. Thomas, R. J. Bonilla, H. Yong and P. G. Jessop, *Can. J. Chem.*, 2001, **79**, 719–724.
- 150 T. Sakai, Y. Tsutsumi and T. Ema, Green Chem., 2008, 10, 337-341.
- 151 A. Ion, C. Van Doorslaer, V. Parvulescu, P. Jacobs and D. De Vos, *Green Chem.*, 2008, **10**, 111–116.
- 152 B. M. Bhanage, S. Fujita, Y. Ikushima and M. Arai, *Green Chem.*, 2003, 5, 340–342.
- 153 A. I. Cooper, J. Mater. Chem., 2000, 10, 207-234.
- 154 J. Liu, B. X. Han, Z. M. Liu, J. Wang and Q. Huo, J. Supercrit. Fluids, 2001, 20, 171–176.
- 155 Y. Q. Huang, S. R. Schricker, B. M. Culbertson and S. V. Olesik, J. Macromol. Sci., Part A: Pure Appl. Chem., 2002, 39, 27–38.
- 156 Q. Xu, B. X. Han and H. K. Yan, J. Appl. Polym. Sci., 2003, 88, 2427–2433.
- 157 J. Liu, B. X. Han, R. Zhang, Z. M. Liu, T. Jiang and G. Y. Yang, J. Supercrit. Fluids, 2003, 25, 91–97.
- 158 C. D. Wood, A. I. Cooper and J. M. DeSimone, *Curr. Opin. Solid State Mater. Sci.*, 2004, 8, 325–331.
- 159 M. E. Kemmere, M. W. A. Kuijpers, R. M. H. Prickaerts and J. T. E. Keurentjes, *Macromol. Mater. Eng.*, 2005, **290**, 302–310.

- 160 M. W. A. Kuijpers, L. J. M. Jacobs, M. F. Kemmere and J. T. F. Keurentjes, *AIChE J.*, 2005, **51**, 1726–1732.
- 161 G. Zwolak and F. P. Lucien, *Macromolecules*, 2006, **39**, 8669– 8673.
- 162 G. Zwolak, N. S. Jayasinghe and F. P. Lucien, J. Supercrit. Fluids, 2006, 38, 420–426.
- 163 B. N. Hansen, B. M. Hybertson, R. M. Barkley and R. E. Sievers, *Chem. Mater.*, 1992, 4, 749–752.
- 164 D. E. Raynie, Anal. Chem., 1993, 65, 3127-3128.
- 165 M. McCarthy, H. Stemmer and W. Leitner, *Green Chem.*, 2002, 4, 501–504.
- 166 K. Burgemeister, G. Francio, H. Hugl and W. Leitner, Chem. Commun., 2005, 6026–6028.
- 167 K. Burgemeister, G. Francio, V. H. Gego, L. Greiner, H. Hugl and W. Leitner, *Chem.–Eur. J.*, 2007, **13**, 2798–2804.
- 168 D. Hâncu and E. J. Beckman, Green Chem., 2001, 3, 80-86.
- 169 D. Hâncu, H. Green and E. J. Beckman, Ind. Eng. Chem. Res., 2002, 41, 4466–4474.
- 170 P. Licence, J. Ke, M. Sokolova, S. K. Ross and M. Poliakoff, *Green Chem.*, 2003, **5**, 99–104.
- 171 A. C. Frisch, P. B. Webb, G. Zhao, M. J. Muldoon, P. J. Pogorzelec and D. J. Cole-Hamilton, *Dalton Trans.*, 2007, 5531–5538.
- 172 L. Devetta, P. Canu, A. Bertucco and K. Steiner, *Chem. Eng. Sci.*, 1997, **52**, 4163–4169.
- 173 M. G. Hitzler, F. R. Smail, S. K. Ross and M. Poliakoff, Org. Process Res. Dev., 1998, 2, 137–146.
- 174 W. K. Gray, F. R. Smail, M. G. Hitzler, S. K. Ross and M. Poliakoff, J. Am. Chem. Soc., 1999, **121**, 10711–10718.
- 175 R. Tschan, R. Wandeler, M. S. Schneider, M. M. Schubert and A. Baiker, *J. Catal.*, 2001, **20**, 219–229.
- 176 G. Jenzer, M. S. Schneider, R. Wandeler, T. Mallat and A. Baiker, J. Catal., 2001, 199, 141–148.
- 177 G. Jenzer, T. Mallat and A. Baiker, *Catal. Lett.*, 2001, **73**, 5–8. 178 R. Tschan, R. Wandeler, M. S. Schneider, M. Burgener, M. M.
- Schubert and A. Baiker, *Appl. Catal., A*, 2002, **223**, 173–185. 179 M. Burgener, R. Furrer, T. Mallat and A. Baiker, *Appl. Catal., A*,
- 2004, **268**, 1–8.
- 180 M. Caravati, J.-D. Grunwaldt and A. Baiker, *Catal. Today*, 2004, **91–92**, 1–5.
- 181 R. Amandi, P. Licence, S. K. Ross, O. Aaltonen and M. Poliakoff, Org. Process Res. Dev., 2005, 9, 451–456.
- 182 M. Burgener, T. Mallat and A. Baiker, J. Mol. Catal. A: Chem., 2005, 225, 21–25.
- 183 P. Licence, W. K. Gray, M. Sokolova and W. K. Gray, J. Am. Chem. Soc., 2005, 127, 293–298.
- 184 M. Caravati, J.-D. Grunwaldt and A. Baiker, *Phys. Chem. Chem. Phys.*, 2005, 7, 278–285.
- 185 M. Caravati, D. M. Meier, J.-D. Grunwaldt and A. Baiker, J. Catal., 2006, 240, 126–136.
- 186 M. Burgener, T. Tyszewski, D. Ferri, T. Mallat and A. Baiker, *Appl. Catal.*, *A*, 2006, **299**, 66–72.
- 187 M. Caravati, J.-D. Grunwaldt and A. Baiker, *Appl. Catal.*, A, 2006, 298, 50–56.
- 188 R. A. Bourne, J. G. Stevens, J. Ke and M. Poliakoff, *Chem. Commun.*, 2007, 4632–4634.
- 189 T. Seki, J. D. Grunwaldt and A. Baiker, *Chem. Commun.*, 2007, 3562–3564.
- 190 R. Amandi, K. Scovell, P. Licence, T. J. Lotz and M. Poliakoff, Green Chem., 2007, 9, 797–801.
- 191 T. Seki, J.-D. Grunwaldt, N. van Vegten and A. Baiker, Adv. Synth. Catal., 2008, 350, 691–705.
- 192 T. Matsuda, R. Marukado, S. Koguchi, T. Nagasawa, M. Mukouyama, T. Harada and K. Nakamura, *Tetrahedron Lett.*, 2008, 49, 6019–6020.
- 193 A. Bruggink, R. Schoevaart and T. Kieboom, Org. Process Res. Dev., 2003, 7, 622–640.
- 194 D. E. Fogg and E. N. dos Santos, Coord. Chem. Rev., 2004, 248, 2365–2379.
- 195 J. C. Wasilke, S. J. Obrey, R. T. Baker and G. C. Bazan, *Chem. Rev.*, 2005, **105**, 1001–1020.
- 196 H. Pellissier, Tetrahedron, 2006, 62, 1619-1665.
- 197 X. F. Xie, C. L. Liotta and C. A. Eckert, *Ind. Eng. Chem. Res.*, 2004, 43, 2605–2609.
- 198 N. Hiyoshi, T. Inoue, C. Rode, O. Sato and M. Shirai, *Catal. Lett.*, 2006, **106**, 133–138.

- 199 G. Francio, K. Wittmann and W. Leitner, J. Organomet. Chem., 2001, 621, 130–142.
- 200 F. Y. Zhao, Y. Ikushima and M. Arai, Green Chem., 2003, 5, 656– 658.
- 201 P. Jessop, D. C. Wynne, S. DeHaai and D. Nakawatase, *Chem. Commun.*, 2000, 693–694.
- 202 K. Buchmuller, N. Dahmen, E. Dinjus, D. Neumann, B. Powietzka, S. Pitter and J. Schon, *Green Chem.*, 2003, 5, 218–223.
- 203 P. T. Anastas and J. C. Warner, *Green Chemistry: Theory and Practice*, Oxford University Press, 1998.
- 204 C. D. Ablan, J. P. Hallett, K. N. West, R. S. Jones, C. A. Eckert, C. L. Liotta and P. G. Jessop, *Chem. Commun.*, 2003, 2972–2973.
- 205 J. Lu, J. Lazzaroni, J. P. Hallett, A. S. Bommarius, C. L. Liotta and C. A. Eckert, *Ind. Eng. Chem. Res.*, 2004, **43**, 1586–1590.
- 206 J. Fang, H. Jin, T. Ruddy, K. Pennybaker, D. Fahey and B. Subramaniam, *Ind. Eng. Chem. Res.*, 2007, 46, 8687–8692.
- 207 D. Chouchi, D. Gourgouillon, M. Courel, J. Vital and M. N. da Ponte, *Ind. Eng. Chem. Res.*, 2001, 40, 2551–2554.
- 208 A. Milewska, A. M. B. Osuna, I. M. Fonseca and M. N. da Ponte, *Green Chem.*, 2005, 7, 726–732.
- 209 J. Y. Song, M. Q. Hou, T. Jiang, B. X. Han, X. Y. Li, G. Liu and G. Y. Yang, J. Phys. Chem. A, 2007, 111, 12007–12010.
- 210 B. Rajagopalan, M. Wei, G. T. Musie, B. Subramaniam and D. H. Busch, *Ind. Eng. Chem. Res.*, 2003, **42**, 6505–6510.
- 211 M. Ramin, J.-D. Grunwaldt and A. Baiker, *Appl. Catal.*, A, 2006, 305, 46–53.
- 212 A. Bertucco, P. Canu, L. Devetta and A. G. Zwahlen, *Ind. Eng. Chem. Res.*, 1997, 36, 2626–2633.
- 213 B. Warwick, F. Dehghani, N. R. Foster, J. R. Biffin and H. L. Regtop, *Ind. Eng. Chem. Res.*, 2000, **39**, 4571–4579.
- 214 M. H. Shin, N. Y. Cheong, J.-H. Lee and H. K. Kim, Food Chem., 2009, DOI: 10.1016/j.foodchem.2009.1001.1013.
- 215 H. Kawanami and Y. Ikushima, J. Jpn. Pet. Inst., 2002, 45, 321–324.
- 216 X. F. Xie, C. L. Liotta and C. A. Eckert, *Ind. Eng. Chem. Res.*, 2004, 43, 7907–7911.
- 217 M. Selva, P. Tundo, A. Perosa and F. Dall'Acqua, J. Org. Chem., 2005, 70, 2771–2777.
- 218 C. R. Qi and H. F. Jiang, Green Chem., 2007, 9, 1284-1286.
- 219 H. F. Jiang, J. W. Zhao and A. H. Wang, Synthesis, 2008, 763-769.
- 220 M. Burgener, D. Ferri, J.-D. Grunwaldt, T. Mallat and A. Baiker, J. Phys. Chem. B, 2005, 109, 16794–16800.
- 221 S. I. Fujita, S. Okamura, Y. Akiyama and M. Arai, *Int. J. Mol. Sci.*, 2007, 8, 749–759.
- 222 V. Arunajatesan, B. Subramaniam, K. W. Hutchenson and F. E. Herkes, *Chem. Eng. Sci.*, 2007, 62, 5062–5069.
- 223 K. N. West, C. Wheeler, J. P. McCarney, K. N. Griffith, D. Bush, C. L. Liotta and C. A. Eckert, *J. Phys. Chem. A*, 2001, **105**, 3947– 3948.
- 224 T. S. Chamblee, R. R. Weikel, S. A. Nolen, C. L. Liotta and C. A. Eckert, *Green Chem.*, 2004, 6, 382–386.
- 225 R. R. Weikel, J. P. Hallett, C. L. Liotta and C. A. Eckert, *Ind. Eng. Chem. Res.*, 2007, 46, 5252–5257.
- 226 J. P. Hallett, P. Pollet, C. L. Liotta and C. A. Eckert, Acc. Chem. Res., 2008, 41, 458–467.
- 227 R. Wandeler, N. Kunzle, M. S. Schneider, T. Mallat and A. Baiker, J. Catal., 2001, 200, 377–388.
- 228 R. Wandeler, N. Kunzle, M. S. Schneider, T. Mallat and A. Baiker, *Chem. Commun.*, 2001, 673–674.
- 229 S. van den Hark and M. Harrod, *Ind. Eng. Chem. Res.*, 2001, **40**, 5052–5057.
- 230 E. J. Shimshick, CHEMTECH, 1983, June, 374-375
- 231 V. R. Sarsani, C. J. Lyon, K. W. Hutchenson, M. A. Harmer and B. Subramaniam, J. Catal., 2007, 245, 184–190.
- 232 K. Matsui, H. Kawanami, Y. Ikushima and H. Hayashi, *Chem. Commun.*, 2003, 2502–2503.
- 233 C. J. Lyon, V. S. R. Sarsani and B. Subramaniam, Ind. Eng. Chem. Res., 2004, 43, 4809–4814.
- 234 J. E. Chateauneuf and K. Nie, *Adv. Environ. Res.*, 2000, 4, 307–312.
- 235 B. J. Flowers, R. Gautreau-Service and P. G. Jessop, Adv. Synth. Catal., 2008, 350, 2947–2958.
- 236 Y. Kokubo, A. Hasegawa, S. Kuwata, K. Ishihara, H. Yamamoto and T. Ikariya, *Adv. Synth. Catal.*, 2005, 347, 220–224.

- 237 H.-F. Jiang, Q.-X. Xu and A.-Z. Wang, J. Supercrit. Fluids, 2009, DOI: 10.1016/j.supflu.2009.1002.1003.
- 238 B. M. Bhanage, Y. Ikushima, M. Shirai and M. Arai, *Tetrahedron Lett.*, 1999, 40, 6427–6430.
- 239 S. Fujita, T. Tanaka, Y. Akiyama, K. Asai, J. Hao, F. Zhao and M. Arai, *Adv. Synth. Catal.*, 2008, **350**, 1615–1625.
- 240 S. E. Hunter, C. E. Ehrenberger and P. E. Savage, J. Org. Chem., 2006, 71, 6229–6239.
- 241 A. Yamaguchi, N. Hiyoshi, O. Sato, C. V. Rode and M. Shirai, *Chem. Lett.*, 2008, 37, 926–927.
- 242 A. Yamaguchi, N. Hiyoshi, O. Sato, K. K. Bando and M. Shirai, *Green Chem.*, 2009, 11, 48–52.
- 243 R. Raue, A. Brack and K. H. Lange, Angew. Chem., Int. Ed. Engl., 1991, 30, 1643–1644.
- 244 J. Hooker, D. Hinks, G. Montero and C. Conlee, *Color. Technol.*, 2002, **118**, 273–276.
- 245 V. A. Grinberg, T. A. Koch, V. M. Mazin, E. I. Mysov and S. R. Sterlin, *Russ. Chem. Bull.*, 1997, 46, 1560–1564.
- 246 V. M. Mazin, E. I. Mysov, S. R. Sterlin and V. A. Grinberg, *J. Fluorine Chem.*, 1998, 88, 29–35.
- 247 S. Chanfreau, P. Cognet, S. Camy and J. S. Condoret, J. Supercrit. Fluids, 2008, 46, 156–162.
- 248 B. Subramaniam, D. H. Busch, G. T. Musie and M. Wei, WO. Pat., WO200177052-A, 2001.
- 249 B. Kerler, R. E. Robinson, A. S. Borovik and B. Subramaniam, *Appl. Catal.*, *B*, 2004, **49**, 91–98.
- 250 S. A. Nolen, J. Lu, J. S. Brown, P. Pollet, B. C. Eason, K. N. Griffith, R. Glaser, D. Bush, D. R. Lamb, C. L. Liotta, C. A. Eckert, G. F. Thiele and K. A. Bartels, *Ind. Eng. Chem. Res.*, 2002, 41, 316–323.
- 251 K. N. West, J. P. Hallett, R. S. Jones, D. Bush, C. L. Liotta and C. A. Eckert, *Ind. Eng. Chem. Res.*, 2004, **43**, 4827–4832.
- 252 L. A. Blanchard and J. F. Brennecke, *Green Chem.*, 2001, **3**, 17–19.
- 253 Z. S. Hou, B. X. Han, X. G. Zhang, H. F. Zhang and Z. M. Liu, J. Phys. Chem. B, 2001, 105, 4510–4513.
- 254 J. C. Zhang, T. Jiang, B. X. Han, A. L. Zhu, X. M. Ma, Y. X. Zhou, L. Bai, H. W. Xiang and Y. W. Li, *J. Phys. Chem. B*, 2007, 111, 5322–5325.
- 255 Z. Knez, C. G. Laudani, M. Habulin and E. Reverchon, *Biotechnol. Bioeng.*, 2007, **97**, 1366–1375.
- 256 M. Rezayat and H. S. Ghaziaskar, Green Chem., 2009, 11, 710-715.
- 257 M. Habulin, S. Sabeder, M. Paljevac, M. Primozic and Z. Knez, J. Supercrit. Fluids, 2007, 43, 199–203.
- 258 H. P. Tai and G. Brunner, J. Supercrit. Fluids, 2009, 48, 36-40.
- 259 L. Schmid, M. S. Schneider, D. Engel and A. Baiker, *Catal. Lett.*, 2003, 88, 105–113.
- 260 S. E. Hunter and P. E. Savage, Chem. Eng. Sci., 2004, 59, 4903– 4909.
- 261 O. Hemminger, A. Marteel, M. R. Mason, J. A. Davies, A. R. Tadd and M. A. Abraham, *Green Chem.*, 2002, 4, 507–512.
- 262 H. Jin and B. Subramaniam, Chem. Eng. Sci., 2004, 59, 4887– 4893.
- 263 J. Panpranot, K. Phandinthong, P. Praserthdam, M. Hasegawa, S. I. Fujita and M. Arai, J. Mol. Catal. A: Chem., 2006, 253, 20–24.
- 264 N. Hiyoshi, E. Mine, C. V. Rode, O. Sato and M. Shirai, *Appl. Catal.*, A, 2006, **310**, 194–198.
- 265 G. B. Jacobson, C. T. Lee, K. P. Johnston and W. Tumas, J. Am. Chem. Soc., 1999, 121, 11902–11903.
- 266 J. Hao, C. Xi, H. Cheng, R. Liu, S. Cai, M. Arai and F. Zhao, *Ind. Eng. Chem. Res.*, 2008, **47**, 6796–6800.
- 267 H. S. Phiong, F. P. Lucien and A. A. Adesina, J. Supercrit. Fluids, 2003, 25, 155–164.
- 268 T. Sato, O. Sato, K. Arai, E. Mine, N. Hiyoshi, C. V. Rode and M. Shirai, J. Supercrit. Fluids, 2006, 37, 87–93.
- 269 Q. Wang, H. Cheng, R. Liu, J. Hao, Y. Yu, S. Cai and F. Zhao, *Catal. Commun.*, 2008, DOI: 10.1016/j.catcom.2008.1010.1042.
- 270 U. R. Pillai and E. Sahle-Demessie, *Chem. Commun.*, 2002, 422–423.
- 271 U. R. Pillai, E. A. Sahle-Demessie and D. Young, *Appl. Catal.*, *B*, 2003, 43, 131–138.
- 272 N. Hiyoshi, C. V. Rode, O. Sato, H. Tetsuka and M. Shirai, J. Catal., 2007, 252, 57–68.
- 273 F. Y. Zhao, R. Zhang, M. Chatterjee, Y. Ikushima and M. Arai, *Adv. Synth. Catal.*, 2004, **346**, 661–668.

- 274 F. Zhao, Y. Ikushima and M. Arai, J. Catal., 2004, 224, 479-483.
- 275 C. Y. Xi, H. Y. Cheng, J. M. Hao, S. X. Cai and F. Y. Zhao, J. Mol. Catal. A: Chem., 2008, 282, 80–84.
- 276 S. Ichikawa, M. Tada, Y. Iwasawea and T. Ikariya, *Chem. Commun.*, 2005, 924–926.
- 278 M. Chatterjee, T. Yokoyama, H. Kawanami, M. Sato and T. Suzuki, *Chem. Commun.*, 2009, 701–703.
- 279 S. K. Ross, N. J. Meehan, M. Poliakoff and D. Carter, WO. Pat., WO200281414-A, 2002.
- 280 U. R. Pillai and E. Sahle-Demessie, Ind. Eng. Chem. Res., 2003, 42, 6688–6696.
- 281 B. M. Bhanage, Y. Ikushima, M. Shirai and M. Arai, Chem. Commun., 1999, 1277–1278.
- 282 S. Fujita, S. Akihara and M. Arai, J. Mol. Catal. A: Chem., 2006, 249, 223–229.
- 283 F. Y. Zhao, S. Fujita, J. M. Sun, Y. Ikushima and M. Arai, *Chem. Commun.*, 2004, 2326–2327.
- 284 M. Chatterjee, Y. Ikushima and F. Y. Zhao, *Catal. Lett.*, 2002, 82, 141–144.
- 285 M. Chatterjee, F. Y. Zhao and Y. Ikushima, *Appl. Catal.*, A, 2004, 262, 93–100.
- 286 M. Chatterjee, Y. Ikushima, C. Yokoyama and S. Suzuki, *Micropor. Mesopor. Mater.*, 2009, **117**, 201–207.
- 287 F. Zhao, Y. Ikushima, M. Chatterjee, M. Shirai and M. Arai, Green Chem., 2003, 5, 76–79.
- 288 M. Chatterjee, Y. Ikushima and F. Y. Zhao, New J. Chem., 2003, 27, 510–513.
- 289 B. M. Bhanage, Y. Ikushima, M. Shirai and M. Arai, *Catal. Lett.*, 1999, **62**, 175–177.
- 290 S. Pereda, S. B. Bottini and E. A. Brignole, *Appl. Catal.*, A, 2005, 281, 129–137.
- 291 R. X. Liu, F. Y. Zhao, S. Fujita and M. Arai, *Appl. Catal.*, A, 2007, 316, 127–133.
- 292 M. Chatterjee, Y. Ikushima, T. Yokoyama and M. Sato, *Adv. Synth. Catal.*, 2008, **350**, 624–632.
- 293 M. Chatterjee, A. Chatterjee and Y. Ikushima, *Green Chem.*, 2004, 6, 114–118.
- 294 M. Chatterjee, F. Y. Zhao and Y. Ikushima, Adv. Synth. Catal., 2004, 346, 459–466.
- 295 G. B. Combes, F. Dehghani, F. P. Lucien, A. K. Dillow and N. R. Foster, in *Reaction Engineering for Pollution Prevention*, ed. M. A. Abraham and R. P. Hesketh, Elsevier, Amsterdam, 2000, pp. 173–181.
- 296 G. Combes, E. Coen, F. Dehghani and N. Foster, J. Supercrit. Fluids, 2005, 36, 127–136.
- 297 M. Primožič, M. Paljevac, M. Habulin and Ž. Knez, *Desalination*, 2009, 241, 14–21.
- 298 X. W. Wu, Y. Oshima and S. Koda, Chem. Lett., 1997, 1045– 1046.
- 299 Z. S. Hou, B. X. Han, L. Gao, Z. M. Liu and G. Y. Yang, Green Chem., 2002, 4, 426–430.
- 300 R. S. Givens, C. C. Ma, D. H. Busch, B. Subramaniam and B. Rajagopalan, US Pat., US2008139841-A1, 2008.
- 301 J. S. Yoo, S. H. Jhung, K. H. Lee and Y. S. Park, *Appl. Catal., A*, 2002, **223**, 239–251.
- 302 S. Jhung, Y. Park, K. Lee, J. Chae, J. Yoo, S. H. Chung, Y. S. Park, J. H. Chae, G. H. Lee, J. S. Ryoo and J. S. Yoo, US Pat., US6180822-B2, 1999.
- 303 S. Jhung, K. Lee, Y. Park, J. Yoo, J. S. Yoo, S. H. Chung, G. H. Lee, Y. S. Park, J. S. Ryoo, S. H. Jung, K. H. Lee and Y. Pari, *WO. Pat.*, WO200037407-A, 1999.
- 304 X. B. Zuo, B. Subramaniam and D. H. Busch, Ind. Eng. Chem. Res., 2008, 47, 546–552.
- 305 B. Rajagopalan, H. Cai, D. H. Busch and B. Subramaniam, *Catal. Lett.*, 2008, **123**, 46–50.
- 306 S. Sharma, B. Kerler, B. Subramaniam and A. S. Borovik, *Green Chem.*, 2006, 8, 972–977.
- 307 B. Kimmerle, J.-D. Grunwaldt and A. Baiker, *Top. Catal.*, 2007, 44, 285–292.
- 308 D. A. Morgenstern, R. M. LeLaucheur, D. K. Morita, S. L. Borkowsky, S. Feng, G. H. Brown, L. Luan, M. F. Gross, M. J. Burk and W. Tumas, in *Green Chemistry: Designing Chemistry for*

the Environment, ed. P. T. Anastas and T. C. Williamson, American Chemical Society, Washington DC, 1996, vol. 626, pp. 132–151.

- 309 B. Ganchegui and W. Leitner, Green Chem., 2007, 9, 26-29.
- 310 X. Z. Huang and H. F. Jiang, Chem. Res. Chin. Univ., 2008, 24, 658–660.
- 311 G. P. Chiusoli, M. Costa, L. Cucchia, B. Gabriele, G. Salerno and L. Veltri, J. Mol. Catal. A: Chem., 2003, 204–205, 133– 142.
- 312 Z. S. Hou, B. X. Han, Z. M. Liu, T. Jiang and G. Y. Yang, Green Chem., 2002, 4, 467–471.
- 313 T. Sakakura, J. C. Choi, Y. Saito and T. Sako, *Polyhedron*, 2000, 19, 573–576.
- 314 S. Fujita, B. M. Bhanage, Y. Ikushima and M. Arai, *Green Chem.*, 2001, 3, 87–91.

- 315 X. B. Lu, R. He and C. X. Bai, J. Mol. Catal. A: Chem., 2002, 186, 1–11.
- 316 F. Jutz, J.-D. Grunwaldt and A. Baiker, J. Mol. Catal. A: Chem., 2008, 279, 94–103.
- 317 F. Jutz, J. D. Grunwaldt and A. Baiker, J. Mol. Catal. A: Chem., 2009, 297, 63–72.
- 318 M. Aresta, E. Quaranta and A. Ciccarese, J. Mol. Catal., 1987, 41, 355–359.
- 319 J. M. Sun, S. Fujita, B. M. Bhanage and M. Arai, *Catal. Today*, 2004, **93–95**, 383–388.
- 320 J. R. Dunetz, R. P. Ciccolini, M. Froling, S. M. Paap, A. J. Allen, A. B. Holmes, J. W. Tester and R. L. Danheiser, *Chem. Commun.*, 2005, 4465–4467.
- 321 H.-J. Lee, M. Ghanta, D. H. Busch and B. Subramaniam, *Chem. Eng. Sci.*, 2009, DOI: 10.1016/j.ces.2009.1002.1008.